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Abstract

Objectives: In this study, we propose a diagnostic model for automatic detection of

otitis media based on combined input of otoscopy images and wideband tympano-

metry measurements.

Methods: We present a neural network-based model for the joint prediction of otitis

media and diagnostic difficulty. We use the subclassifications acute otitis media and

otitis media with effusion. The proposed approach is based on deep metric learning,

and we compare this with the performance of a standard multi-task network.

Results: The proposed deep metric approach shows good performance on both tasks,

and we show that the multi-modal input increases the performance for both classifi-

cation and difficulty estimation compared to the models trained on the modalities

separately. An accuracy of 86.5% is achieved for the classification task, and a Kendall

rank correlation coefficient of 0.45 is achieved for difficulty estimation, correspond-

ing to a correct ranking of 72.6% of the cases.

Conclusion: This study demonstrates the strengths of a multi-modal diagnostic tool

using both otoscopy images and wideband tympanometry measurements for the

diagnosis of otitis media. Furthermore, we show that deep metric learning improves

the performance of the models.
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1 | INTRODUCTION

Automatic diagnosis of otitis media has been tackled in various ways.

Previous studies have employed datasets of otoscopy images,1–4

tympanometry measurements5–7 optical coherence tomography,8 or

computed tomography.9 The approaches have utilized a variety of

machine learning algorithms for the data analysis and classification

task, progressing from simpler methods such as Random Forest10 and

Support Vector Machines,11 to advanced deep neural net-

works.1,5,7,12,13 When a doctor examines a patient, the diagnosticRasmus R. Paulsen and Anders Nymark Christensen are shared senior authorship.
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decision is rarely based solely on one modality from the clinical exami-

nation. Binol et al.14 were the first to combine otoscopy images and

standard 226-Hz tympanometry measurements for the classification

of normal or abnormal middle ear. The standard tympanometry analy-

sis was based on manually selected features including peak admit-

tance, peak pressure, tympanometric width, and ear canal volume,

which were fed to a Random Forest model. The otoscopy analysis

was based on a pre-trained Inception-ResNet-V2 network, fine-tuned

for the specific classification task. The classification decisions of these

two models were fused using majority voting for the final classifica-

tion. The method was demonstrated on a limited dataset of 73 cases,

and the evaluation was thus performed using leave-one-out

cross-validation. Furthermore, they showed that the combination of

otoscopy images and standard tympanograms outperformed the clas-

sification based on the individual modalities. Wideband tympanometry

(WBT) has shown to be more efficient in evaluating the condition of

the middle ear, and it provides more detailed information on the

mechanical and acoustic status of the middle ear than the standard

226-Hz tympanogram.15 Furthermore, higher classification accuracy

can be achieved using WBT measurements for the detection of otitis

media, compared to both ambient absorbance and standard tympano-

grams.7 We propose the use of WBT measurements in combination

with otoscopy images for the diagnosis of otitis media in the diagnos-

tic groups: otitis media with effusion (OME), acute otitis media

(AOM), and no effusion (NOE). This is important to ensure proper

treatment, as antibiotics are only needed to treat acute otitis media,

not otitis media with effusion.

There has been an increasing interest in neural network-based

diagnosis of otitis media, or other middle ear conditions, based on oto-

scopy images. Habib et al.16 recently published a review on this topic,

including 39 papers published over the last 10 years. They conclude

that these classification models are more accurate than human asses-

sors and that the next big task in this field is to implement these

methods into a clinical tool that doctors can—and want to—use. An

important aspect of this step is allowing the user of a clinical tool to

learn more from the model than just the diagnosis. Several studies

have employed saliency maps to allow the user to learn about the

decision process of the model by identifying the most important fea-

tures of the input data.7,17 Another valuable output would be an esti-

mate of the difficulty of the input case. Combining the diagnosis with

the estimated difficulty allows the operator to assess the output of

the model and to evaluate whether to redo the otoscopy or WBT or

refer the patient to an expert ENT for further examination. Diagnostic

difficulty estimation was investigated by Hannemose et al.18 They

present several supervised and unsupervised methods for estimating

the difficulty from the distribution of the dataset in the embedding

space from a metric learning-based neural network.

The goal of this work is to predict both diagnostic class and diffi-

culty for each case, and we evaluate two methods for this task. One

of the proposed methods is a deep metric learning approach, which

means that the output of the neural network is a low dimensional rep-

resentation of the input image, denoted an embedding, instead of a

classification output. Deep metric learning has been used for learning

feature representations of otoscopy images in other studies with

promising results.1,19,20 The image embeddings can then be used to

predict diagnostic class and using the supervised method presented

by Hannemose et al.18 The other approach is a multi-task network for

joint prediction, which learns the prediction tasks end-to-end. We are

the first to propose a purely neural network-based model for the anal-

ysis of otoscopy images and WBT measurements combined into a sin-

gle model. Furthermore, our models are developed for joint prediction

of otitis media and diagnostic difficulty.

2 | METHODS

We propose a single network for the combined analysis of otoscopy

images and WBT measurements. The network architecture, seen in

Figure 1, consists of a pre-trained Inception V321 network for the oto-

scopy image input and a network designed specifically for the analysis

of WBT measurements using the architecture proposed by Sundgaard

et al.7 The results presented by Sundgaard et al.7 show that using the

full WBT measurements for the detection of otitis media is superior

to both ambient absorbance and standard tympanograms. Thus, we

only use the full WBT measurements in the current study. The out-

puts of both these networks are feature vectors of size 1024, which

are concatenated and sent through a series of fully connected layers.

These fully connected layers ensure that the network learns to com-

bine the feature vectors from the two different inputs into a single

decision. The size of the layers is gradually decreased through the fully

connected layers, ending at the 32-dimensional final-layer vector. The

single modality models have the same linear layers after the main con-

volution blocks, but the first layer is of size 1024, instead of 2048.

We compare two different training procedures for the network:

one based on multi-task learning, and another based on deep metric

learning for embedding prediction:

Multi-task learning: This network is trained end-to-end for simul-

taneous prediction of otitis media diagnosis and diagnostic difficulty.

The final layers of this network consist of two fully connected layers

after the 32-dimensional output, one with a single output for the diffi-

culty and another with a softmax output with size 3 for the classifica-

tion output. During training, the loss function for this network has

two terms: an L1-loss for the difficulty output and a class-weighted

cross-entropy loss for the classification, using the inverse frequency

of each class as weights.

Deep metric learning: In the deep metric neural network, the out-

put of the network is an embedding vector representing the combina-

tion of the two inputs: image and WBT. In the proposed network

architecture, this is the 32-dimensional output of the final layer in

Figure 1. In deep metric learning, cases are mapped to a lower dimen-

sional embedding space, where similar cases cluster together. During

training, the network learns to move similar cases together and push

dissimilar cases further apart, thus creating clusters of the different

classes in the embedding space. When training a network with deep

metric learning, the output of the network is a lower-dimensional rep-

resentation of the input instead of a probability for a certain class.
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This allows us to use this embedding space for either classification or

derivation of other metrics, such as diagnostic difficulty.

The deep metric learning network is trained using the

multi-similarity loss function22 (α = 2, β = 50, base = 1) and a multi-

similarity miner (ε = 0.1) using cosine similarity to optimize the selec-

tion of training pairs. Classification is performed in the embedding

space by predicting the class with the closest training data cluster cen-

ter to the current test example. Difficulty estimation is performed

with the supervised method employing Extra Trees23 with both

embeddings and ground truth labels as input.18

All networks were trained with Adam optimizer and a learning

rate of 0.0001, decreased by a factor of 0.1 every 50th epoch. The

models were trained until convergence on the training set, as it was

found to achieve the best final model. During training, data augmenta-

tion of both input modalities was performed. For input images, trans-

formations include horizontal flips, random rotation, color jitter, and

random erasing. For the WBT measurements, we employ the transfor-

mations shown to improve training of the WBT network7: random

Gaussian noise, noise increasing exponentially in intensity across the

frequency axis, random erasing, and Gaussian hilly terrain, where a

mixture of Gaussian functions with various intensities are added to

the input to generate spatially correlated noise.

2.1 | Data

The dataset consists of 1014 pairs of otoscopy images and WBT mea-

surements collected at Kamide ENT clinic, Shizuoka, Japan, from

patients aged between 2 months and 12 years. The otoscopy images

were captured with an endoscope, and the WBT measurements were

performed using the Titan system (Interacoustics, Denmark). Each

case was diagnosed with one of three different diagnoses: no effusion

(NOE, 484 pairs), otitis media with effusion (OME, 375 pairs), and

acute otitis media (AOM, 155 pairs) by an experienced ENT specialist

(the 6th author) based on signs, symptoms, patient history, otoscopy

examination, and WBT measurements. Examples of images and WBT

measurements from the three groups are shown in Figure 2. The data

were collected and handled under the ethical approval from the Non-

Profit Organization MINS Institutional Review Board (reference num-

ber 190221), with either opt-out consent or informed consent from

their parent or guardian.

The otoscopy images are of size 640 � 480 pixels but are

cropped to a square, as the sides are black and does not contain any

information, and down-sampled to 299 � 299 to fit the Inception V3

architecture. Down-sampling the input images is standard procedure

when employing pre-trained networks,4,12 and is not expected to

impact the results of the current work, as the diagnosis is based on

larger features in the image that are not affected by down-sampling,

such as redness of the eardrum and presence of effusion. The WBT

measurements are not necessarily uniformly sampled regarding pres-

sure, and the measured pressure values will change slightly from mea-

surement to measurement. All measurements in the dataset were

therefore resampled to a common grid using bilinear interpolation.

The grid is defined from 180 daPa to �280 daPa in 84 steps on a lin-

ear scale, whereas the frequency grid goes from 226 Hz to 4 kHz in

84 steps on a logarithmic scale.

After data collection, four additional ENTs evaluated all cases in

the dataset. They were shown an otoscopy image and WBT measure-

ment pair for each patient and diagnosed with one of the three diag-

noses (OME, AOM, or NOE), or “unknown.” Furthermore, they

responded with their self-reported certainty on their diagnosis on the

scale: very low, low, medium, moderate, or high, which was converted

to a numerical scale ranging from 0 to 1. These annotations allow find-

ing of the difficulty of each case based on the fraction of correct ENT

answers (compared to the original ENT), μcorrect, and the average self-

evaluated certainty, μcertainty. The difficulty of each case is then

given as18:

D¼1�μcorrect�μcertainty

More details on the human inter-rater study with the four ENTs

can be found in Sundgaard et al.24 The ground truth diagnosis used

F IGURE 1 Network architecture of the combined otoscopy image and WBT network. Numbers below the bars indicate the size of the layer.
The boxes to right show the final layers of the multi-task and the embedding network approaches respectively.
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for training the models for this paper is based solely on the diagnosis

by the original ENT, who assessed the patients in the clinic. There is,

of course, a risk of human errors in the annotation process, but no

other solution for achieving a ground truth diagnosis was possible in

the current study. It is expected that this ENT has the best circum-

stances for providing the true diagnosis, compared to the four addi-

tional ENT's, who only had access to the image and WBT

measurements, but not the actual patient. In the calculation of diffi-

culty, we thus expect the original ENT to provide the best possible

diagnosis, which we thus define as the true diagnosis.

Due to the limited number of cases in the dataset, all experiments

were performed with five-fold cross-validation. This allows computa-

tion of performance metrics on the full dataset, instead of only a frac-

tion of it. It was ensured that eventual multiple data pairs from one

patient were only present in either a training or validation fold.

3 | RESULTS

Figure 3 shows the embeddings of the training and test data gener-

ated for one of the cross-validation folds for the image and WBT

model in two dimensions using t-SNE dimensionality reduction.25

F IGURE 2 Otoscopy images and WBT measurements from patients diagnosed with otitis media with effusion (A and D), acute otitis media
(B and E), and no effusion (C and F).

F IGURE 3 Visualization of embeddings. The transparency of each
point indicates the ground truth difficulty, with very transparent being
the easiest. Gray points are the training cases, colored points are test
cases. The center of each cluster is marked with “X.”
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From these embeddings, classification and difficulty estimation was

performed. It can be seen that the easy cases are in the center of the

OME and AOM clusters, while the difficult cases are on the boundary

of the cluster or inside other clusters. This shows that there is a rela-

tionship between the image embeddings and diagnostic difficulty, as

also shown by Hannemose et al.18 Table 1 shows the performance in

both tasks: otitis media classification and estimation of the diagnostic

difficulty for all proposed models. For classification, both accuracy

and class-wise F1-scores are reported. The F1-score is the harmonic

mean of the precision and recall. Kendall rank correlation

coefficient,26 also called Kendall's τ, was used to evaluate the diffi-

culty estimation. It is a non-parametric measurement of the correla-

tion between two ranked variables. It only evaluates the ranking of

cases, not the specific difficulty values. Table 2 contains confusion

matrices for the three embedding models. The numbers in the table

are the sum of the confusion matrices across all five test folds, such

that the full dataset is represented in each table.

As seen in Table 1, the highest classification performance is

achieved by the combined image and WBT model, as both accuracy

and each class-wise F1-score are superior to the scores obtained with

the other methods. The results also show that Kendall's τ for difficulty

estimation is increased when the model is trained on both images and

WBT measurements. A Kendall's τ of 0.45 corresponds to having

ranked 73% of the cases correctly. One-way ANOVAs show a signifi-

cant difference between one or more groups for accuracy (F = 10.97,

p = .000014), AOM F1-score (F = 44.87, p = 2.09e�11), OME

F1-score (F = 23.41, p = 1.66e�8), but not for NOE F1-score

(F = 1.34, p = .28). Normal distribution the data were checked using

the Shapiro–Wilks test, and homogeneity of variances across groups

was checked using Levene's test, thus fulfilling the assumptions of the

ANOVA test. Tukey's post hoc tests reveal that both WBT-based

models have a significantly lower performance than all image-based

and combined models in both accuracy, AOM F1-score, and OME

F1-score at a 0.05 significance level. There was, however, not a statis-

tically significant difference between the embedding models and the

multi-task models, or between the image-based models and the com-

bined models.

Evaluation of Kendall's τ show that one or more models are dif-

ferent from the others (F = 3.26, p = .02), and post-hoc analysis

found that there is only a significant difference between the com-

bined embedding model and the WBT embedding model (p = .01).

TABLE 1 Performance of the
proposed models.

Network Accuracy [%]

F1-score [%] Difficulty

OME AOM NOE Kendall's τ

Image multi-task 85 ± 4 82 ± 5 78 ± 5 88 ± 3 0.39 ± 0.03

Image embed 85 ± 3 83 ± 4 77 ± 2 90 ± 2 0.43 ± 0.01

WBT multi-task 74 ± 2 69 ± 4 53 ± 5 87 ± 3 0.42 ± 0.03

WBT embed 68 ± 3 51 ± 10 51 ± 3 87 ± 3 0.36 ± 0.07

Image and WBT multi-task 85 ± 4 83 ± 5 77 ± 5 90 ± 3 0.40 ± 0.02

Image and WBT embed 86 ± 2 84 ± 4 82 ± 4 90 ± 2 0.45 ± 0.02

Note: Each performance metric is the average across all five cross-validation folds, with ± indicating the

standard deviation. The best performance in each column is indicated with bold.

TABLE 2 Confusion matrices for the
entire dataset using the embedding
models.

Image model WBT model Image and WBT model

OME AOM NOE OME AOM NOE OME AOM NOE

OME 306 23 34 162 175 38 307 18 50

AOM 24 117 7 25 121 9 21 124 10

NOE 45 15 443 56 20 408 31 7 446

Total 375 155 484 243 316 455 359 149 506

Note: Rows are ground truth labels, and columns are the predictions from each model. The bold values

just shows the correctly identified cases.

F IGURE 4 Scatter plot of ground truth difficulties and difficulties
estimated with the supervised approach, together with the least-
squares regression line.
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Figure 4 shows a scatterplot of ground truth difficulties versus esti-

mated difficulties using the combined image and WBT embedding

model.

The average ground truth difficulty for the full dataset is 0.51. For

the 877 correctly classified cases, the average ground truth difficulty

is 0.48, while for the 137 misclassified cases, it is 0.68. Similarly, Ken-

dall's τ for predicting the difficulty of correctly classified cases is 0.48,

corresponding to 74% correctly ranked cases, while for misclassified

cases it is 0.16, corresponding to only 58% correctly ranked cases.

These results show that the most difficult cases for the ENTs to diag-

nose are also challenging for the model to classify and that when the

network fails to predict the correct class, the difficulty estimation typi-

cally also suffers. When the patients were initially diagnosed in the

clinic, the ENT classified the diagnosis of AOM and OME as mild or

severe, depending on the severity of the symptoms. The ground truth

difficulty for mild cases is generally higher than for severe cases (0.60

vs. 0.23 for AOM, respectively, and 0.36 vs. 0.25 for OME, respec-

tively). It is found that the classification true positive rate (TPR), or

sensitivity, also differs between mild and severe cases. For AOM, the

TPR is 62% and 85% for mild and severe cases, respectively, while for

OME, it is 73% and 92%, respectively.

4 | DISCUSSION AND CONCLUSION

When inspecting the results, it is clear that the embedding networks

outperform the multi-task network for both classification and diffi-

culty estimation. Table 2 shows that, in addition to the overall supe-

rior performance, the combined embedding network manages to

improve the classification of AOM, from an F1-score of 0.77 for the

combined multi-task network, to 0.82. The class imbalance in

the dataset makes it challenging to diagnose AOM, but these results

show that deep metric learning handles this class imbalance better

than a network trained with standard class-weighted cross-entropy

loss functions. This confirms the findings that Sundgaard et al.1

obtained for the single-modality image model. It is important to note,

however, that not all increases in performance are statistically signifi-

cant, as discussed in the Results section.

The confusion matrix for the WBT model in Table 2 shows that

the WBT model struggles with separating AOM and OME, but it

detects NOE very well. Despite this, the recall of AOM is very high,

which is surprising, given the AOM and OME classification results pre-

sented in previous studies.7,27 Thus, when WBT measurements and

images are combined into one multi-modal model, the biggest classifi-

cation improvement from the image-only model is found for the AOM

class. This is an important improvement, as AOM is often difficult to

diagnose, and the distinction between OME and AOM is crucial in

deciding whether to prescribe antibiotics for the patient.

The results show that mild cases are more difficult to diagnose

based only on the otoscopy image and WBT measurement than

severe cases. This is evident for both the trained model and the four

additional ENTs, as indicated by the higher ground-truth diagnostic

difficulty. It shows that the mild symptoms are not well captured by

these two modalities and that more information from the patient is

needed to improve the prediction. It is an important limitation of this

model that symptoms must reach a certain severity or intensity before

the model can detect otitis media.

The multi-modal model performs better for both classification

and difficulty estimation compared to the models trained on the two

modalities separately. The four ENTs in the human inter-rater study

by Sundgaard et al.24 achieved 64% accuracy on this dataset based on

the same amount of patient information used in the multi-modal

embedding model, which achieved 86%. This substantial increase in

performance is very promising for a future diagnostic tool and shows

the strength of deep learning models for medical image analysis.

FUNDING INFORMATION

This study was financially supported by the William Demant

Foundation.

CONFLICT OF INTEREST STATEMENT

Søren Laugesen, Pete Bray, James Harte, and Chiemi Tanaka work for

the Demant Group, which develops and manufactures otoscopy and

wideband tympanometry equipment. Josefine Vilsbøll Sundgaard now

works for Novo Nordisk A/S.

ORCID

Josefine Vilsbøll Sundgaard https://orcid.org/0000-0003-2872-

4660

Søren Laugesen https://orcid.org/0000-0001-9531-9978

REFERENCES

1. Sundgaard JV, Harte J, Bray P, et al. Deep metric learning for otitis

media classification. Med Image Anal. 2021;71:102034.

2. Senaras C, Aaron CM, Theodoros T, et al. Detection of eardrum

abnormalities using ensemble deep learning approaches. Medical

Imaging 2018: Computer-aided diagnosis. 2018;10575:295-300.

3. Shie CK, Chang HT, Fan FC, Chen CJ, Fang TY, Wang PC. A hybrid

feature-based segmentation and classification system for the com-

puter aided self-diagnosis of otitis media. Annu Int Conf IEEE Eng Med

Biol Soc. 2014;4655-4658.

4. Wu Z, Lin Z, Li L, et al. Deep learning for classification of pediatric oti-

tis media. Laryngoscope. 2021;131(7):E2344-E2351.

5. Grais EM, Wang X, Wang J, Zhao F, Jiang W, Cai Y. Analysing wide-

band absorbance immittance in normal and ears with otitis media with

effusion using machine learning. Sci Rep. 2021;11(1):1-12.

6. Terzi S, Özgür A, Erdivanli ÖÇ, et al. Diagnostic value of the wideband

acoustic absorbance test in middle-ear effusion. J Laryngol Otol. 2015;

129(11):1078-1084.

7. Sundgaard JV, Bray P, Laugesen S, et al. A deep learning approach for

detecting otitis media from wideband tympanometry measurements.

IEEE J Biomed Heal Inform. 2022;26:2974-2982.

8. Monroy GL, Won J, Dsouza R, et al. Automated classification platform

for the identification of otitis media using optical coherence tomogra-

phy. NPJ Digit Med. 2019;2(1):1-11.

9. Wang YM, Li Y, Cheng YS, et al. Deep learning in automated region

proposal and diagnosis of chronic otitis media based on computed

tomography. Ear Hear. 2020;0:669-677.

10. Kuruvilla A, Shaikh N, Hoberman A, Kovačevi�c J. Automated diagnosis
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