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Abstract

We present a deep metric variational autoencoder
for multi-modal data generation. The variational
autoencoder employs triplet loss in the latent
space, which allows for conditional data genera-
tion by sampling new embeddings in the latent
space within each class cluster. The approach is
evaluated on a multi-modal dataset consisting of
otoscopy images of the tympanic membrane with
corresponding wideband tympanometry measure-
ments. The modalities in this dataset are corre-
lated, as they represent different aspects of the
state of the middle ear, but they do not present
a direct pixel-to-pixel correlation. The approach
shows promising results for the conditional genera-
tion of pairs of images and tympanograms, and will
allow for efficient data augmentation of data from
multi-modal sources.

1 Introduction

Deep generative models are able to generate new
data within the distribution of the training dataset,
and can be used for advanced data augmentation in
cases where data are costly to annotate or difficult
to acquire [19]. A widely used generative model is
the variational autoencoder (VAE) [13]. The VAE
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is a probabilistic model consisting of an encoder
that learns an approximation of the posterior dis-
tribution of the data and a decoder that learns to
reconstruct the original input from a latent repre-
sentation. An advantage of VAEs over generative
adversarial networks (GANs) [4] is that the VAE
learns a smooth latent representation of the input
data [3]. The latent space can therefore be used
for sampling new latent representations and thus
generate new examples from the distribution of the
training dataset using the VAE decoder.

Conditional data generation, e.g., the conditional
VAE [14], allows us to specify which class in the
dataset to generate new data from. Here, both
the latent representations and the input data are
conditioned by, e.g., class label. Instead of condi-
tioning the model for class specific data generation,
Karaletsos et al. [11] proposed the triplet-loss based
VAE for generation of interpretable latent represen-
tations that separate the classes in the latent space
with deep metric learning. Karaletsos et al. [11]
put their main focus on learning the latent repre-
sentations, whereas we are interested in using the
triplet-loss-based VAE for data generation. We ex-
pand the approach to include estimation of the class
distributions in the latent space, and generation of
new conditional examples. Furthermore, we pro-
pose a multi-modal network structure with a com-
mon latent space, which allows for the generation
of new paired examples from multiple modalities.
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Figure 1: Examples from the dataset and generated examples: otoscopy images (top) and WBT measure-
ments (bottom). Acute otitis media (left two images), otitis media with effusion (middle two images),
no effusion (right two images).

The multi-modal dataset consists of pairs of oto-
scopy images of the tympanic membrane and wide-
band tympanometry (WBT) measurements, exam-
ples of which are presented in Figure 1. The two
types of data are very different, as the first is an
image acquired with a camera, and the other is
the result of an acoustic measurement. Further-
more, they reflect different aspects of the state of
the middle ear. The otoscopy image gives a vi-
sual impression of the tympanic membrane, which
can show signs of e.g. infection or effusion, while
the WBT measurement provides quantitative indi-
cations about the presence of fluid in the middle
ear, the mobility of the tympanic-ossicular system,
and the volume of the external auditory canal. The
two types of data are therefore correlated but do
not have a direct pixel-to-pixel relation.

Several studies have developed different ap-
proaches for otitis media classification based on ei-
ther otoscopy images [18, 20, 16] or WBT measure-
ments [5, 22, 21]. Binol et al. proposed a combined
deep learning classification approach based on stan-
dard single-frequency tympanograms and otoscopy
images [1]. Otitis media can be separated into two
main diagnostic groups: acute otitis media (AOM)
and otitis media with effusion (OME). Figure 1
shows the difference between these two diagnostic
groups, where AOM is an acute infection with red-
ness and a bulging eardrum, and OME is a build-up
of fluid in the middle ear. An example of a normal
eardrum with no effusion (NOE) is also shown. The

WBT measurements in Figure 1 show how the ab-
sorbance across the pressure axis does not change
in AOM or OME measurements, while the NOE
measurements typically show a general increase in
absorbance around 0 daPa, compared to negative or
positive relative pressures. Furthermore, the gen-
eral absorbance level at lower frequencies is lower
for AOM and OME, than for NOE measurements.
Both types of data can be used for the diagnosis of
otitis media.

The aim of this paper is to generate new pairs
of otoscopy images and WBT measurements from
each of the three diagnostic groups: AOM, OME,
and NOE, and for this task, we propose the multi-
modal triplet VAE. The generated otoscopy image
and WBT pairs can be used as advanced data aug-
mentation for a multi-modal classification pipeline.
Our multi-modal generative model can also be used
in other domains such as pairs of cardiac images
and electrocardiograms, or brain scans and elec-
troencephalograms. These modalities have a corre-
lation, while reflecting different aspects - visual and
functional - of the condition of the examined organ.
This work can also be used for the training of doc-
tors and models while preserving patient privacy.
Generated data ensures anonymity and allows for
data to be shared without regulations such as EU’s
GDPR, and some studies have already shown the
usability of variational autoencoders in this field
[15, 19].
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Figure 2: Structure of the multi-modal triplet VAE. Top figure shows the overall structure with two
encoders, concatenation of the outputs, sampling, and two decoders. The bottom figure shows the
residual blocks used in both encoders and decoders. BN refers to batch normalization.

2 Methods

The multi-modal triplet VAE consists of two en-
coders and two decoders - one for each modality,
and the structure is shown in Figure 2 together
with the structure of the upsampling and down-
sampling blocks used to construct the encoders and
decoders. The architecture was inspired by Hou et
al. [9] with several modifications, including resid-
ual connections [6] and changes in kernel size of the
convolutional layers. The encoders define the ap-
proximate joint posterior distribution q(z|x1, x2),
where x1 represents the otoscopy image input and
x2 represents the WBT input. Each encoder net-
work consists of five downsampling blocks using 2D
average pooling, and take the 64× 64× 3 otoscopy
images and the 64× 64× 1 WBT measurements as
input. The architecture starts with 64 feature maps
in the first block, and the number of features is dou-
bled in each consecutive block, while the size of the
feature maps is halved. The output feature maps
from each encoder (2× 2× 512) are concatenated,
and two 2 × 2 convolutional layers are used to ob-
tain the mean and variance in the 128-dimensional
latent space, z. The size of the latent space was
chosen based on the experiments presented in the
papers by Schroff et al. [17] and Hermans et al. [8].
Because the encoder outputs are concatenated, we
achieve a joint latent space, which allows for sam-
pling in the latent space to generate new paired
examples of both modalities. The decoders will

thus receive information from both the image and
WBT for the reconstruction of each modality. Us-
ing the reparameterization trick [14], a latent vec-
tor is sampled from the joint posterior distribution
q(z|x1, x2) and passed to both decoders. The de-
coders, p(x̄1|z) and p(x̄2|z), reconstruct the inputs
(x̄1 representing the reconstructed otoscopy image
and x̄2 the reconstructed WBT measurement) pro-
vided the latent vector. The decoder networks con-
sist of six residual upsampling blocks using nearest-
neighbor upsampling, where the number of features
is halved for each block starting at 512 and the fea-
ture maps size is doubled. The final layer is a single
3× 3 convolutional layer that goes from 32 feature
maps to the desired number of output channels,
one channel for WBT measurements and three for
otoscopy images.

The training loss function consists of several
parts. The difference between reconstructed WBT
and input WBT is penalized using binary cross en-
tropy (BCE) loss. The reconstruction of the im-
age is evaluated using structured similarity index
(SSIM) loss [24], which is a local measurement that
compares the reconstruction and original image
based on luminance, contrast, and structural infor-
mation. In the latent space, both Kullback–Leibler
(KL) divergence and triplet loss [17] are computed.
The KL divergence forces the latent embeddings
close to a standard normal distribution, while the
triplet loss forces examples from the same class to
cluster together and pushes examples from different
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classes further apart [17]. The loss function terms
related to the embedding space are weighted lower
than the rest of the terms, and the value 0.1 was
experimentally chosen, leading to a loss function
defined as:

Loss = LSSIM +LBCE +0.1 · (LKL+Ltriplet) (1)

Balanced sampling is performed during training,
with a batch size of 60 (20 pairs from each class)
to ensure a balanced representation of every class
in each training batch and to cope with the class
imbalance in the dataset. The triplets are sampled
in each batch using semi-hard mining [17] based
on the encoder-generated mean vector from each
input pair. The VAE is trained for 5000 epochs us-
ing the Adam optimizer [12] with a learning rate of
0.0004. Data augmentation is performed using ran-
dom erasing [26] on both image and WBT measure-
ment, while horizontal flipping and rotation with
±20 degrees are also performed on the images.
The individual distributions of each of the three

classes in the latent space are not necessarily equal
to the prior distribution p(z) = N(0, 1), since the
model is trained with both KL divergence loss and
triplet loss to regulate the latent space. For gener-
ation of new image and WBT pairs, we thus need
to estimate the posterior distribution of each of the
three classes. Once the network is trained, the test
set is passed through the encoders, obtaining la-
tent representations of each image and WBT pair
in the test set. The distribution of each class in the
latent space is approximated using kernel density
estimation for each class. Gaussian kernel density
estimation estimates the probability density func-
tion in the latent space by placing a Gaussian ker-
nel on each sample. The bandwidth of the kernel
is fine-tuned using five-fold cross-validation. Ker-
nel density estimation is performed only on the
test set, estimating the joint posterior distribution,
q(z|x1, x2), of each class. New latent vectors, z can
then be sampled within each of the estimated class
distributions, which are run through the decoders, ,
p(x̄1|z) and p(x̄2|z), generating new pairs of images
and WBT measurements.

2.1 Data

The dataset consists of 1420 pairs of images and
WBT measurements collected at Kamide ENT

clinic, Shizouka, Japan, from patients aged between
2 months and 12 years. Each pair was assigned one
of the three classes: NOE (537 pairs), OME (419
pairs), and AOM (211 pairs) by an experienced
ENT specialist based on signs, symptoms, patient
history, otoscopy examination, and WBT measure-
ments. The data was collected and handled under
the ethical approval from the Non-Profit Organiza-
tion MINS Institutional Review Board (reference
number 190221), with either opt-out consent, or
informed consent from their parent or guardian.

An otoscopy image is captured using an endo-
scope (dedicated video otoscope) inserted into the
ear canal, allowing a visual inspection of the tym-
panic membrane. The original image size was
640×480 pixels, which was cropped and downsam-
pled to 64× 64 to fit the proposed architecture. A
WBT measurement is performed by inserting and
hermetically sealing an acoustic probe with an ap-
propriately sized silicone ear tip into the patient’s
ear canal. The probe repeatedly presents a tran-
sient stimulus with a frequency range encompass-
ing 226 Hz to 8 kHz, while modifying the pressure
in the external acoustic canal relative to the ambi-
ent pressure from 200 to -300 daPa [7]. The mea-
surements were performed using the Titan system
(Interacoustics, Denmark). From the WBT mea-
surement, it is possible to derive conclusions about
both tympanic membrane mobility and the condi-
tion of the middle ear, and thus additional diag-
nostic power can be gained over visual inspection
alone. WBT measurements were bilinearly resam-
pled to a common grid from 180 daPa to -280 daPa
in 64 steps on a linear scale for the pressure axis,
and from 226 Hz to 4 kHz in 64 steps for the fre-
quency axis. Examples of both images and WBT
measurements are shown in Figure 1.

The dataset is split into a train (80%) and test
(20%) set. It was ensured that data from one pa-
tient was only used for either training or testing, to
prevent data leakage.

3 Results

The test embeddings are shown in Figure 3. The
128-dimensional latent representation of each im-
age has been reduced to two dimensions using t-
SNE dimensionality reduction [23] to visualize the
latent space. The test embeddings clearly show
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Figure 3: t-SNE visualization of test data latent
embeddings.

three clusters, but they blend in the transition areas
between the classes, as the images and WBT mea-
surements can look quite similar across the diag-
nostic groups. Some of the overlap could also arise
from the drastic dimensionality reduction from 128
to two dimensions. It is not possible to fully rep-
resent and visually inspect a 128-dimensional em-
bedding space in a 2D plot, but t-SNE attempts
to preserve the topology neighbourhood structure
of the data. The clusters would therefore likely
more separable in the high-dimensional space, as
some information is lost in the dimensionality re-
duction [23].

New latent representations are sampled in the
full 128-dimensional space within the three-class
distributions estimated with kernel density estima-
tion, and examples of generated otoscopy images
and WBT measurements are plotted in Figures 4,
5, and 6. Figure 4 shows examples of generated
images in the three diagnostic groups. The images
look realistic, as they all contain a tympanic mem-
brane, clear diagnostic markers, and the malleus
bone is seen in several examples. The top row of
AOM images shows signs of redness and bulging
eardrum, and the OME cases clearly have effusion
behind the eardrum. The NOE cases appear pale
and translucent, as expected.

Other examples of generated pairs of otoscopy

images and WBT measurements are shown side
by side with original examples from the dataset
in Figure 1. These are not reconstructions, but
new generated images. In this figure, it is possible
to compare the diagnostic markers of the condi-
tions across modalities, while also comparing the
generated examples with original examples. Fig-
ure 1 a) and b) show similar signs of AOM red-
ness and infection and reduced absorbance in the
WBT, which is relatively flat across the pressure
axis. The two OME cases in Figure 1 c) and d)
show very similar diagnostic signs on both the orig-
inal and generated data with yellow effusion behind
the tympanic membrane. Likewise, the absorbance
is much lower with very little variation across pres-
sures. The NOE cases in Figure 1 e) and f) show
normal tympanic membranes and high absorbance
in the WBT with a change across pressures.

The generation of WBT measurements is sum-
marized in Figure 5, where generated examples are
shown together with the average WBT of the gener-
ated samples as well as the original dataset for each
of the three diagnostic groups. The average of the
generated samples is computed from 500 samples
in each diagnostic group. The two average WBT
measurements look very similar. This shows that
the generated WBT measurements within each di-
agnostic group follow the same pattern as the mean
of the original dataset, thus the distribution of the
classes has been captured quite well. The gener-
ated examples also indicate great variation within
each class.

There is, of course, great variability in the ap-
pearance of both otoscopy images and WBT mea-
surements, depending on the severity of symptoms.
The generated data show the same range from mild
to severe symptoms, and the generated pairs show
that the two modalities are representing the same
disease severity. This is shown in Figure 6. Figure
6 a) and c) show mild cases of AOM and OME,
where the respective otoscopy image shows no se-
vere signs of otitis media, and the absorbance in the
WBT is also high. On the other hand, in Figure
6 b) and d) the otoscopy images show a severe in-
fection in the AOM case and effusion in the OME
case, accompanied by very low absorption values
in both WBT measurements. Both NOE cases in
Figure 6 e) and f) show pale eardrum with no sign
of infection, and high absorbance with an increased
absorbance at ambient pressure.
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Figure 4: Examples of generated otoscopy images.
Top row: AOM, middle row: OME, bottom row:
NOE. Best viewed with zoom.

4 Discussion and Conclusion

The proposed multi-modal triplet-loss based VAE
is able to generate highly realistic conditional pairs
of otoscopy images and WBT measurements. The
generated images in Figures 1, 4, and 6 show that
the proposed triplet-loss based VAE generates im-
ages with a large variation in appearance, and with
clear diagnostic markers. The generated images are
slightly blurry, which is a common problem with
VAEs [2]. The use of SSIM loss [24] has dramati-
cally improved the quality of the generated images,
compared to the use of BCE loss. Other studies
have found ways to improve the quality even fur-
ther and have thus synthesized high-resolution im-
ages using VAEs [10, 25], which can be incorporated
into our approach in future work. As the WBT is
a simpler type of data to generate as it does not
contain the same level of detail as an image, BCE
loss is sufficient for this modality, and the results in
Figures 1, 5, and 6 show that the generated WBT
measurements correspond very well to the appear-
ance and structure of the original WBT measure-
ments.

In this study, we propose a VAE structure
for conditional multi-modal data generation, even
when no direct pixel-to-pixel correlation exists be-
tween the different modalities. This multi-modal
VAE structure is very flexible, as the encoder and
decoder for each modality are completely decou-
pled from the other modality. This allows different

Figure 5: Overview of generated WBT measure-
ments. Top row: AOM, middle row: OME, bottom
row: NOE. Best viewed with zoom.

architectures to be used for each modality depend-
ing on the specific needs of the individual modal-
ities. The network architecture employed for the
otoscopy images can be changed to allow the gen-
eration of larger and higher-quality images. Simi-
larly, the architecture can be altered to fit tempo-
ral data, such as electrocardiograms or electroen-
cephalograms, if our method is employed in other
domains. Furthermore, the results show how condi-
tional data generation can be accomplished by em-
ploying triplet loss in the latent space of the VAE.
In this way, conditioning the input or latent space
is not needed, as one can simply sample within a
certain class cluster.

This work shows how we are able to generate new
data pairs. We do not transform between modal-
ities, such as generating an otoscopy image from
a WBT measurement input. The level of infor-
mation in these two modalities is very different,
as the WBT contains much less information about
the middle ear, compared to the otoscopy images.
It is thus not feasible to synthesize an image by
analysing only a WBT measurement. The main
use of this model is thus for data augmentation.
As seen in Figure 3, combining these two modali-
ties in a single model allows for a good separation
of the three classes in the embedding space, which
we will further explore in future work on a multi-
modal classification pipeline.
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Figure 6: Generated pairs of otoscopy images and WBT measurements. a) mild AOM case, b) severe
AOM case, c) mild OME case, d) severe OME case, e) NOE case, and f) NOE case.
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