
1

Tunnel Effect in CNNs:
Image Reconstruction from Max Switch Locations

Matthieu de La Roche Saint Andre∗†¶, Laura Rieger∗‡¶, Morten Hannemose∗§, Junmo Kim¶
∗These authors contributed equally to this work

†EFREI, France, ¶KAIST, South Korea, ‡Technische Universität Berlin, §Technical University of Denmark

Abstract—In this paper, we show that reconstruction of
an image passed through a neural network is possible, using
only the locations of the max pool activations. This was
demonstrated with an architecture consisting of an encoder
and a decoder. The decoder is a mirrored version of the
encoder, where convolutions are replaced with deconvolutions
and poolings are replaced with unpooling layers. The locations
of the max pool switches are transmitted to the corresponding
unpooling layer. The reconstruction is computed only from
these switches without the use of feature values. Using only
the max switch location information of the pool layers, a
surprisingly good image reconstruction can be achieved. We
examine this effect in various architectures, as well as how
the quality of the reconstruction is affected by the number of
features. We also compare the reconstruction with an encoder
with randomly initialized weights with an encoder pretrained
for classification. Finally, we give recommendations for future
architecture decisions.

Index Terms—image reconstruction, convolutional neural
networks, pooling, autoencoder, encoding, unpooling, decon-
volution

I. Introduction
In the last decade, convolutional neural networks

(CNNs) have been used to effectively solve various com-
puter vision problems. However, there is still much to
discover about CNNs’ inner workings regarding different
training techniques and architectures, despite attempts to
gain more insight [1]. Springenberg et al. [2] compared
several CNN architectures and concluded that pooling and
fully connected layers could be replaced with convolution,
without incurring any loss of performance.

In this paper, we introduce a surprising phenomenon
that occurs while using max unpooling. Pooling layers are
used in neural networks to reduce the size of the feature
map. They combine the information of the receptive field
of input neurons (e.g., a kernel of 2 by 2 pixels) and output
a unique value per receptive field. This happens either by
using the average of the entire receptive field, known as
average pooling, or by outputting only the highest value,
known as max pooling.

Unpooling layers [1] approximately reverse the effects
of a pooling layer. Max unpooling utilizes max switch
locations that are the positions of the input neurons with
the highest values in the corresponding max pooling layer

Copyright (c) 2016 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending a request to pubs-
permissions@ieee.org. An author is expressly permitted to post any
portion of the accepted version of his/her own IEEE-copyrighted
articles on the author’s personal web site.

Fig. 1. Image reconstruction from the ImageNet test set. Upper row:
input images, lower row: output images.

and fills the output neurons in these positions with the
values. All other neurons are zero, resulting in a sparse
feature map.

When we refer to deconvolutional layers, it is the type
of layer described in [1]. Because we have stride one, we
could replace them with conventional convolutional layers.
However, we decided to work with deconvolutional layers
for easier understanding.

We found that reconstructing an image with deconvo-
lutional and unpooling layers works exceptionally well
as shown in Fig. 1, although no feature is used for
reconstruction. The reconstruction relies solely on the
max switch positions used in the unpooling layers. The
information is effectively tunneled through a normally
impenetrable wall: All features are discarded; only the
information about their position is transmitted through
the max switches.

This has potential repercussions for applications that
manipulate the image in a higher-level feature space with
a CNN. If the image reconstruction depends more on
spatial information than on the actual values in the feature
map, this information will also have to be manipulated.
Likewise, if the max pool tunnel effect is undesirable, then
steps will have to be taken to prevent the information from
“leaking through” the max switches.

II. Related Work
To our knowledge, there is no literature on the re-

construction of images from only max switch location
information. However, multiple papers use max unpooling
layers to reconstruct an image from a sparse representation
[3]–[7].

Zeiler et al. [6] train a network to learn low-, mid-
, and high-level representations of a given image. After
each convolutional layer, a deconvolutional layer uses its
output along with the max switches to reconstruct the



2

TABLE I
Architecture of the Network.

Convolution and deconvolution: Kernel size 3, padding 1, stride 1. Pooling and unpooling: Kernel size 2, stride 2

Type data conv conv pool conv conv pool conv conv pool bias unpool deconv deconv unpool deconv deconv unpool deconv deconv L2 Loss
#filters 3 n1 n1 n1 n2 n2 n2 n3 n3 n3 n3 n3 n3 n2 n2 n2 n1 n1 n1 3 1
Feature map size 128 128 128 64 64 64 32 32 32 16 16 32 32 32 64 64 64 128 128 128 128
ReLU no yes yes no yes yes no yes yes no no no yes yes no yes yes no yes no -

image. By encouraging each layer to learn useful features
for reconstruction, the network learns good representa-
tions on the low, middle, and high levels. Applying a
standard classifier on those learned feature representations
outperformed SIFT and gave highly competitive error
rates for classification. The paper mentions that using
max instead of average unpooling was crucial for retaining
sharp reconstructions, emphasizing the importance of max
unpooling for good spatial reconstruction.

Zhao et al. [5] presented the stacked what-where au-
toencoders (SWWAEs) that make it possible to train the
same network with supervised and unsupervised data.
A conventional CNN with convolutional layers followed
by max pooling layers is used for supervised learning
of classification. For learning with unsupervised data, a
decoder network consisting of deconvolutional and max
unpooling layers, which trains to reconstruct the original
image, is added. The network is trained with a com-
bination of classification loss for supervised data and
L2 reconstruction loss for unsupervised data. The L2
reconstruction loss is made up of reconstruction loss at
the input level, as well as middle reconstruction loss for
the intermediate layers.

Zhang et al. [7] extended the work in [5] and compared
several autoencoders regarding image reconstruction as a
method for unsupervised learning. They concluded that
the feature representation achieved with a deep CNN
preserves the input image except for some locational
details. Similar to our paper, they used unpooling layers
with known max switches but focused on reconstruction
with high-level features. They improved upon VGG16 [8]
trained with ImageNet ILSVRC2012 as a baseline by using
unsupervised training with autoencoders to encourage the
preservation of useful high-level features in the encoder.

Noh et al. [3] used a CNN with deconvolutional and
unpooling layers to create a semantically segmented ver-
sion of the image. They reconstructed the input image
by transmitting the position of the max switches to the
unpooling layer. As in our network, the first half of the
network was inspired by VGG16 [8]. The second half of
the network mirrored this to enable the reconstruction of
the semantically segmented image that goes from a coarse
to a fine representation.

III. Experimental Setup
A. Dataset

We used a subset of ImageNet to evaluate the net-
work architectures [9]. We used 40 000 images equally
distributed over 100 categories with each image resized to
128× 128 pixels.

The dataset was preprocessed by subtracting the mean
value.

Fig. 2. Schematic overview of the network.

B. Architecture and Training
The network architecture is composed of two parts: the

encoder and the decoder. The encoder contains all the
convolutional and max pooling layers, and the decoder
contains the deconvolutional and max unpooling layers.
Fig. 2 visualizes the structure of the network. The encoder
consists of three blocks, where each block is composed of
two convolutional layers each followed by a rectified linear
unit (ReLU), with a max pooling layer in the end of the
block. This is in part inspired by VGG [8].

The decoder consists of three blocks as well, where
each block contains one max unpooling layer followed by
two deconvolutional layers. The middle layer between the
encoder and the decoder we call a bias layer, because it has
all weights connecting it to the previous layers set to zero,
so it can only output constant values. It is implemented
as a 1 × 1 convolution. This causes the only information
about the input image that is used for reconstruction to
be the max switch locations. No features are given to the
decoder.

We will refer a specific architecture by [n1, n2, n3],
where n1 is the number of filters in the outermost pair of
blocks and so on. We have experimented with architectures
that have the same number of filters in each block and
ones that double the number of filters for each successive
block. The general architecture is shown in Table I. The
results shown in Fig. 1 were produced with the [48,96,192],
random encoder.

The network can be considered a degenerate autoen-
coder. The input data is the image that we are trying to
reconstruct, represented as colored pixels. The code is the
set of max switch location masks.

Each network architecture was initialized with random
weights. If indicated, the network was then pretrained for
classification for 50 000 iterations and then trained to
reconstruct the original image for 50 000 iterations with
L2 reconstruction loss.

If no pretraining occurred, the network was trained for
reconstruction directly. Since backpropagation via the max
switches is not possible due to the loss function not being
differentiable with respect to the max-switch locations
and there is no other connection between the encoder



3

TABLE II
RMSE and Bits used for all Architectures

Architecture
Reconstruction

RMSE test
[pixels in range [0;1]]

Max-switch
information

[bits per pixel]

Pretrained No Yes

[8,8,8] 0.1464 0.1545 1.75
[6,12,24] 0.1387 0.1464 1.75
[16,16,16] 0.1210 0.1156 3.5
[12,24,48] 0.1138 0.1206 3.5
[32,32,32] 0.0922 0.0950 7
[24,48,96] 0.0876 0.0915 7
[64,64,64] 0.0744 14
[48,96,192] 0.0718 14

and the decoder, the encoder was not being trained for
encoding useful features [5]. The decoder therefore learned
to reconstruct the image from the max switch locations of
the randomly transformed image if the network was not
pretrained. All architectures were trained with Adagrad as
the optimizer [10]. Instructions for reproducing our results
can be found in Section VIII.

IV. Representation in Another Feature Space
The network maps an image represented as pixels, into

a space of max switch locations. Since the size of the
max switch representation in some cases is bigger than
the size of the input image, this is not a compression but
a transformation to another feature space. However, the
switch locations do not hold information about the pixel
values, only about where different features have their local
maximal activations: the maximum switch location.

V. Results of image reconstruction from max pool
locations

The reconstruction root mean square error (RMSE) for
all architectures can be seen in Table II. For each network
architecture, we also included the number of bits used
to store the max switch locations per pixel in each of the
three color channels. Each pixel in the original image takes
up 8 bits per color channel. From this and Table II, it can
be seen that only [64,64,64] and [48,96,192] take up more
bits per pixel than the uncompressed original image. For
most architectures we present the results with a pretrained
architecture as described in Section III-B along with the
results for randomly initialized weights. In Fig. 3, images
from the test set and their reconstructions are shown.

VI. Discussion
In Section V, we showed the reconstruction of 128×128

pixel images from max pooling switches with different net-
work architectures. We varied the number of filters for each
(de)convolution unit which led to different information

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 3. Image reconstruction from the ImageNet test set. The right-
most image is a close-up of the bird from the third picture. (a)
Original images, (b) [8, 8, 8], random encoder, (c) [6, 12, 24], random
encoder, (d) [16, 16, 16], random encoder, (e) [16, 16, 16], encoder
pretrained for classification, (f) [32, 32, 32], random encoder, (g) [24,
48, 96], random encoder, (h) [64, 64, 64], random encoder, and (i)
[48, 96, 192], random encoder.



4

Fig. 4. Activation of a random channel of each layer during reconstruction with [12,24,48]. The first layer is pure white, since it is the bias
layer, which has one value per channel. The right-most image is the original image.

amounts being transmitted by the max switches. In Fig. 3
and Table II, we see that a higher number of filters results
in better reconstruction and a lower loss. This is to be
expected, because the transmitted information available
for reconstruction is higher.

By varying the number of filters for each individual unit,
we experience a slight improvement in the reconstruction
that is difficult to see in the reconstructed images in
Fig. 3. In almost all cases, pretraining the network for
classification actually increased the loss. We theorize this
happens because features that are useful for classification
are not necessarily good for reconstruction because the
spatial and background information is less useful for
classification.

We see that reconstructions from architectures with
fewer filters have significantly degraded colors. Although
the edges are still reconstructed well, all colors become a
lot duller in the process. We do not fully understand why
this happens.

The most surprising result is that reconstruction with
max switch information works so well in general. As shown
in Fig. 4, the reconstructed image goes from very rough
to a good reconstruction and becomes more detailed as it
is being processed through the layers.

We experimented with different architectures and Im-
ageNet as the dataset to verify that this is not due
to one specific feature of a network but is an inherent
characteristic of max unpooling.

Our results provide a new perspective on some of
the techniques and results shown in Section II. As ex-
plained, [5] used autoencoders to make supervised and
unsupervised training in one architecture possible. For
unsupervised data, the autoencoder part of the network
trains for reconstruction of the image with a decoder
network consisting of deconvolutional and max unpooling
layers. However, training for L2 reconstruction loss will
not necessarily yield good features for classification in
the encoder network because we have shown that good
reconstruction is already possible with max pool switches
of randomly initialized weights.

We theorize that the improved error for street view
house numbers (SVHN) dataset, for example, that [5]
achieved is caused by training w.r.t the intermediate
loss for the hidden states of the network. This forces
the network to reconstruct at each layer and learn good

features for single-layer reconstruction along with the
simultaneous supervised training for classification. Further
experimentation with the SWWAE architecture with L2
reconstruction loss for only the intermediate terms could
clarify this.

Zhang et al. [7] stated that “the intermediate activations
of pretrained large-scale classification networks preserve
almost all the information of input images except a portion
of local spatial details.” However, there is already enough
information in the max switches to reconstruct this image.
Therefore, it is not proven that the activations were
responsible for preservation of the input image. The fact
that using fixed max switches resulted in significantly
worse reconstructions supports this idea.

VII. Conclusion
We have shown that good image reconstruction is pos-

sible with the transmission of max pool switch locations
without any other information about the actual high-level
feature representation in deep layers.

This gives new insights into the abilities of CNNs
with deconvolutional and unpooling layers: Although the
encoder was not trained to output useful information for
the reconstruction of the image, the decoder reconstructs
the image from the switch locations. This is remarkable
since no information about the pixel values was provided.
It explains why reconstruction of the image with max
unpooling for semantic segmentation works so well [3]:
The spatial information can be extracted completely from
the max switch locations.

This is a potential pitfall for future architecture de-
cisions when using unpooling layers as we presented in
Section II. A lot of information will flow through any un-
pooling layers. If this is undesirable, for example, because
the image is manipulated in a higher-level feature space
and then reconstructed according to the modifications [11],
care should be taken when max unpooling is used for this
application.

It is also a concern regarding pretraining for classifica-
tion with unsupervised data, which has recently become
popular again [7]. As we demonstrated, it is possible that
the network will not learn useful features by training
for reconstruction but instead will reconstruct the image
solely from the spatial information without learning.



5

References
[1] M. D. Zeiler and R. Fergus, “Visualizing and understanding

convolutional networks,” in European Conference on Computer
Vision, 2014, pp. 818–833.

[2] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller,
“Striving for simplicity: The all convolutional net,” in ICLR
(workshop track), 2015. [Online]. Available: http://lmb.infor-
matik.uni-freiburg.de//Publications/2015/DB15a

[3] H. Noh, S. Hong, and B. Han, “Learning deconvolution network
for semantic segmentation,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision, 2015, pp. 1520–1528.

[4] J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang, “Object
contour detection with a fully convolutional encoder-decoder
network,” CVPR, pp. 193–203, 2016.

[5] J. Zhao, M. Mathieu, R. Goroshin, and Y. LeCun, “Stacked
what where auto-encoders,” CoRR, vol. abs/1506.02351, 2015.

[6] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive decon-
volutional networks for mid and high level feature learning,” in
2011 International Conference on Computer Vision, 2011, pp.
2018–2025.

[7] Y. Zhang, K. Lee, and H. Lee, “Augmenting supervised neural
networks with unsupervised objectives for large-scale image
classification,” ICML, pp. 612––621, 2016.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2014.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei, “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211–252, 2015.

[10] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient meth-
ods for online learning and stochastic optimization,” Journal of
Machine Learning Research, vol. 12, no. Jul, pp. 2121–2159,
2011.

[11] J. Yim, H. Jung, B. Yoo, C. Choi, D. Park, and J. Kim,
“Rotating your face using multi-task deep neural network,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 676–684.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
architecture for fast feature embedding,” 2014.



6

VIII. Supplementary Materials
A. How to Reproduce the Results

The network was trained with Caffe [12]. We modified a
Caffe fork to leverage the deconvolution and unpooling lay-
ers [3]. It is available on GitHub: github.com/matthieude-
laro/caffe.

All files necessary to reproduce our results are avail-
able at github.com/laura-rieger/max_switch_reconstruc-
tion_tunnel.

Because ImageNet is not publicly available, you must
have access to it to reproduce our exact results. To
generate the exact dataset used for training, place the
ImageNet data in the dataset folder and run the script
GenerateLmdb.sh. All models and solvers are in the proto2
folder. The necessary hyperparameters have already been
set. Fully trained models are in the snapshots2 folder.

We recommend using the Docker image matthieude-
laro/caffe-cifar100, which includes our fork of Caffe.


