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Abstract

We present a deep learning model for image seg-
mentation that uses weakly supervised inputs con-
sisting of scribbles. A user can draw scribbles on
an image with a brush tool corresponding to the
labels they want segmented. The network can seg-
ment images in real time while scribbles are being
drawn, giving instant feedback to the user. It is
easy to correct mistakes made by the network, as
more scribbles can be added. During training we
use a similar psuedo-interactive and iterative setup
to make sure that the network is optimized towards
the human-in-the-loop inference setting. On the
contrary, standard scribble segmentation methods
do not consider the training of the algorithm as
an interactive setting and thus are not suited for
interactive inference. Our model is class-agnostic
and we are able to generalize across many differ-
ent data modalities. We compare our model with
other weakly supervised methods such as bounding
box and extrema point methods, and we show our
model achieves a better mean DICE score.

1 Introduction

Many instance segmentation methods have been
proposed that use user input (signals) along with
the image. These methods are often referred to as
weakly-supervised semantic/instance segmentation.
Signals may vary from bounding boxes (bbox),
extrema points [9] or background/foreground
points [1] to more complex and commonly used
signals such as scribbles. Scribbles are brush-like
strokes used by the network to predict a label.

∗Equal contribution

Figure 1: Selected frames from an example interaction
with our segmentation tool.

Figure 2: Segmentations from our model with hand-
drawn scribbles, produced by our interactive tool.
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Methods based on scribbles [7, 15, 16] usually
train using the crowd-sourced PASCAL-Scribble
Dataset from Lin et al. [7]. The scribbles in this
dataset often consist of a single curved line in the
central part of the corresponding label.

Additionally, these scribbles are used as a single-
iteration signal. The fixed scribbles and the image
are passed through the network and the output is
used as-is. A similar single-iteration framework is
also used in the bbox and extrema point methods.
A consequence of a single-iteration model is that
it is hard to make interactive adjustments to the
input signals to get the desired segmentation; You
cannot input a new bbox to get a better segmenta-
tion. Scribble methods have a larger input signal
space but making adjustments to fix a segmenta-
tion is still hard. Drawing additional or very com-
plex scribbles will rarely work since the model was
only trained to receive a single fixed scribble that
doesn’t depend on the segmentation output. Our
model is trained to receive additional signals where
it fails, thus simulating an interactive segmentation
setting that might arise during inference.

In real-life applications any model will inevitably
make mistakes and the benefit of an interactive
model should be to easily correct such mistakes.
For example, GrabCut [11] allows the user to add
more signals in an intuitive way. Our method aims
at adjusting to the same level of interactive feed-
back. The network is directly optimized towards
adjusting to feedback in the psuedo-interactive
training loop.

We use scribbles as the weakly-supervised sig-
nal, but instead of using the PASCAL-Scribble
Dataset [7], we create our own simulated scribbles
as this provides more control. Specifically, we can
let the scribbles depend on the network output,
which allows us to simulate the human feedback
interaction. During training we randomly do an ad-
ditional forward pass. In the second forward pass
the network is given additional scribbles in areas
where the network prediction was incorrect.

In summary the main contributions of our paper
are

• A scribble generating algorithm generating
hand-drawn like scribbles.

• An iterative training scheme simulating human
like behaviour.

• A segmentation network with real time
human-in-the-loop interaction.

2 Methods

We outline our training data and network archi-
tecture, however these are fairly standard for seg-
mentation problems. The novel part of our method
is the algorithm we use to simulate user-provided
scribbles, as well as the pseudo-interactive training
framework.

2.1 Data

For our models to generalize on different image
types, image qualities, and different data modali-
ties, we use several datasets for training, testing,
and validating. The used datasets are:

• COCO - Common Objects in Context [8], is a
large dataset consisting of 118k images with in-
stance segmentation labels in 91 different cat-
egories.

• Pascal Visual Object Classes [3], is also an im-
age dataset with instance segmentation label-
ing between 20 different object classes. The
dataset is smaller than the COCO dataset and
consists of around 5k images, however, the
quality of the segmentations is very high, with
the majority of the images having multiple la-
bels.

• CHAOS [5] is data originating from two differ-
ent data sources, one from CT scans and one
from MR scans. Each of these sub-datasets
includes DICOM images from 40 different pa-
tients that on average have 40 slices from each
patient. This gives around 3.3k images in the
CHAOS dataset. The CT scans only have an-
notations of the liver, while the MR scans in-
clude segmentations for the liver, spleen, and
kidneys.

• Decathlon [2], is a collection of 2.5k medical 3D
volumetric images. The volumetric images are
collected across multiple anatomies e.g. brain,
heart, and liver. Since our models work on
2D images, we extract slices with segmentation
from the volumetric images in the three differ-
ent axis-parallel planes. Using this approach,
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we have created 93k images with correspond-
ing segmentations.

Each of the datasets is randomly split into a train-
ing, validation, and test set by the proportions
[0.8, 0.1, 0.1]. Due to the different sizes and quali-
ties of the datasets, we sample training data from
the datasets with the probabilities [0.6, 0.1, 0.1, 0.2]
in the order COCO, Pascal, CHAOS and De-
cathlon.

2.2 Network and Interactive Tool

We use an implementation of Effecient-UNetV2 for
our model. This is based on the results from Ja-
hanifar et al. [4] who used Efficient-UNet for in-
teractive segmentation, and on the improvement of
Efficient-Net [12] to Efficient-NetV2 [13]. Hence,
we apply the improvements from Efficient-NetV2 to
a UNet [10] architecture. We utilize the proposed
MB-conv and Fused MB-conv from Efficient-NetV2
along with their optimal parameters in both our
encoder and decoder. For downscaling, we use av-
erage pool and for upscaling we use bilinear upsam-
pling. The full network architecture is illustrated
in Fig. 3.
The input to the network is an image with four

channels: RGB and scribble rendering. The out-
put of the model is a binary segmentation mask for
the object containing the scribble. For segmenta-
tions with multiple classes a scribble input associ-
ated with each label and the same image is given to
the model. E.g. an image with 3 classes is given as
a batch of 3 identical images but where the associ-
ated scribble corresponds to one of the 3 different
classes.

Figure 3: Visualization of the Efficient-UNetV2 archi-
tecture.

For the training of our network, we use Binary
Cross Entropy loss and the Adam optimizer [6] with
a learning rate of 0.0001. The binary labels of our
models are background-foreground where the fore-
ground is the label mask associated with the input
scribble.

The network takes input images of size 128×128
pixels and has approximately 1 million parameters.
An advantage of only having a fairly low number
of parameters is a fast forward pass. Our model
is able to do around 90 sequential forward passes
in a second or a single forward pass in around 11
ms on a Nvidia-Volta-100 32 GB GPU. This cor-
responds to the refresh rate of modern computer
screens, which makes the inference of our model
feel instantaneous. For human-in-the-loop usage of
our tool we have created a GUI1, where the pre-
diction of the network is overlaid on the provided
image based on a scribble input from the user. The
network prediction is updated for each new mouse
movement in real time. Usage of this tool is shown
in Fig. 1.

2.3 Scribble Simulation

For the network to accurately predict a label from
an associated scribble, the network has to be
trained on scribbles that resemble human drawings.
Therefore, a significant contribution of our work is
to simulate human-drawn scribbles with an algo-
rithm fast enough to run during training.

In the context of this work, a scribble is formu-
lated as a graph. This means the scribble is repre-
sented by a set of points and edges characterizing
the shape of the label.

Our method utilizes the Skeletonize algorithm by
Univ. et al. [14] for an initial shape representa-
tion of the label and builds upon it to obtain a set
of evenly spaced points. The set of evenly spaced
points is obtained by constructing a partitioning
for each connected component in a label. The con-
nected components in a label are partitioned into
smaller parts by constructing a grid pattern, i.e.
we partition the label both horizontally and verti-
cally as seen in Fig. 4 (3). We denote the rectan-
gular parts making up the original label as tiles.
The set of tiles constitutes as candidate areas for

1See our GitHub - https://github.com/MMLowes/

Interactive-Scribble-Segmentation.
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Figure 4: Visualization of the scribble simulation. (1) shows the image and label, (2) shows distance field
and Skeletonize dilated, (3) shows the partitioning and ordering of the label, (4) shows the sampled points with
minimum spanning tree (MST) connectivity and finally (5) the spline interpolation with graph augmentation.

points. The spacing of the horizontal and vertical
lines making up the partitioning depends on the
height and width of the respective connected com-
ponent.

We iterate through a random sequence of all the
tiles, and for each tile, we either sample a point
or skip it. A random ordering of the partitioning
can be seen in Fig. 4 (3) . We sample a point if
the sum of the distance field within a tile exceeds a
threshold based on the size of the total label. This
is done to ensure that we only sample points from
tiles containing a meaningful portion of the origi-
nal label. When we sample a point, the position of
the point is based on a probability density field in
the tile given by the product of the distance field
and the dilated output of Skeletonize. This sam-
pling procedure for each tile ensures our approach
is stochastic rather than deterministic. All pixels
within radius r of the point we sample are set to
background and we update the distance field for
the label again. This is done to ensure points are
not in close proximity of each other.

After iterating through each of the tiles, the con-
nectivity of the sampled points is decided. The con-
nectivity is based on the minimum spanning tree
of the points given by a cost matrix. The cost be-
tween two points is given by the euclidean distance
between them. If an edge connecting two points
leaves the label, the distance outside the label is
multiplied by 3 as a penalizer. This is done to pun-

ish generating scribbles outside the boundary of the
label.

We augment 20% of our graphs by randomly
removing either 1, 2 or 3 edges with probability
{1/2, 1/3, 1/6} respectively from the connectivity.
This is done to make the model more robust to
varying user inputs. Only edges connecting two
points both with valence ≥ 2 can be removed. This
criteria is made to ensure points only connected by
a single edge to the graph cannot be disconnected
from all the other points.

With the points and their connectivity decided,
we need to render the graph in pixel-space. This is
done by creating a binary scribble-image, where we
render the scribble. To achieve a human-like look
the following steps are used to draw the scribbles:

1. Find the longest path (using breadth first
search) in the graph, and remove its edges from
the graph.

2. Use the x− and y−coordinates of the points
of the found path to fit a B-spline basis. This
yields a smooth parameterized line that ap-
proximately follows the points.

3. Draw the path by setting all pixels in the
scribble-image within a radius of 2 pixels of
the parameterized spline-lines to 1.

4. Go to step 1. until no edges remain.
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This way of sampling paths ensures we use the
smallest number of paths and is similar to how a
human would draw a scribble. The steps of simu-
lating a scribble are visualized in Fig. 4. Examples
of image and labels pairs with a generated scribble
are visualized in Fig. 5.

Figure 5: Examples of the scribble (light blue) gener-
ation algorithm with image-label pairs.

2.4 Iterative Training

During training, we do an iterative forward pass
30% of the time. This means that we do two for-
ward passes where the first is a normal forward
pass but without gradients. For the second forward
pass, we add an extra scribble where the prediction
failed. If the prediction is too small we add a pos-
itive (foreground) scribble and if it is too large we
add a negative (background) scribble. A negative
scribble means that the pixel values of the scrib-
ble image are -1. The iterated scribble image is
generated by the following procedure, illustrated
in Fig. 6.

1. Look at the difference between the iteration 1
prediction and the ground truth. If there are
more false positives than false negatives then
use negative scribbles, otherwise positive. If
the error is less than 1% relative to the seg-
mentation area then no scribbles are added.

2. Create a temporary label that is used as the
image for the additional scribble generation.
First we threshold the label difference with
values greater than 0.5. The binary image is
then morphologically dilated by the approxi-
mate radius of the ground truth segmentation
to make sure there is some overlap between the
iteration 1 and 2 scribbles.

3. Use the scribble simulation algorithm on the
temporary label to obtain the additional scrib-
ble.

4. Add the old and the additional scribbles to
create a new scribble image.

During human-in-the-loop usage of our model for
segmentation of multiple classes, we utilize negative
scribbles. In the forward passes we segment one
class at a time and here we render the scribbles for
the other classes as negative scribbles.

Figure 6: A conceptual visualization showing an im-
age with a lackluster prediction (yellow) at iteration 1.
The false negative pixels (blue) are dilated to get the
temporary label (green), for which we generate an ad-
ditional scribble (purple). A new prediction (white) is
made using both scribbles (black).

3 Experiments

We choose to compare our model to the methods
from Deep Extreme Cut [9] (extrema points) and
the bounding box (bbox) method. We have used
the same type of Effecient-UNetV2 for these meth-
ods as we have used in our model to better com-
pare the methods instead of the networks. This
entails that we render the bounding box and ex-
trema points as the scribbles are rendered, i.e. in a
fourth channel of the input image.

A manual test dataset is created as a subset of
the Pascal test set where 10 persons have drawn
a total of 197 scribbles for the labels on the test
images. This dataset is made to test how well our
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model extrapolates to human-drawn scribbles since
it was only trained with simulated ones.

A quantitative comparison can be seen in Ta-
ble 1, where we also compare the effect of using
iterative scribble generation for our model. The ta-
ble shows how our model outperforms both the ex-
trema method and the bbox method. Furthermore,
the iterative scribble generation gives the model a
large boost in DICE-score. Our simulated scribbles
emulate humans quite well, as the manual dataset
DICE score of 0.904 still beats the other methods.
Note that in Table 1 the bbox and extrema point in-
puts are perfectly positioned (not generated by hu-
mans). The iterative update for the manual dataset
is not manual and still uses the simulated scribbles.

A visual comparison of the models is made in
Fig. 7, where four different labels on different pic-
tures are predicted. The input to our model is
hand-drawn scribbles while the bbox and extrema
models get the perfectly positioned bounding box
and extrema points from the segmentation mask.

Dataset
Model

Pascal
test

Pascal
vali.

COCO
test

COCO
vali.

Manual
dataset

Our model 0.933 0.936 0.924 0.919 0.904
bbox 0.823 0.832 0.825 0.828 0.868
extrema 0.899 0.899 0.883 0.882 0.899

Our model (iterative) 0.962 0.963 0.951 0.949 0.938

Table 1: Mean DICE scores for different models and
datasets. The manual dataset is a subset of Pascal test.

Figure 7: Examples comparing our method on manual
hand-drawn scribbles with bbox and extrema methods.

Fig. 2 shows segmentations from our model on
test images and Fig. 1 shows the interactive use of
our model. The scribbles used for the segmenta-
tions are hand-drawn in our interactive segmenta-
tion tool, meaning they are iteratively drawn, as
Fig. 1 illustrates. The figures show that with a few
lines we can segment a whole image into different
labels.

4 Discussion and Conclusion

An important benefit of our model is the ability to
correct and iteratively draw on a label to achieve
the desired segmentation. Methods like DEXTR [9]
that use extrema points as network inputs are quite
limited in how the model can be corrected, as there
are no real adjustments you can make to the model
input. For many simple labels, a scribble is also
easier to draw than clicking four precise extrema
points or a bounding box. Another downside to
the bbox and extrema methods is the lack of unique
correspondence between inputs and labels. For ex-
ample, two different labels can have the exact same
bounding box yet be completely different. We of-
ten observed this in the data when a label had a
bounding box that was the size of the full image.

We used simulation to create scribbles instead
of using the PASCAL-Scribble Dataset [7]. Direct
comparison (such as mean DICE score) to most
other scribble methods makes little sense as we do
not have an identical and static input. Our ap-
proach is however similar to Jahanifar et al. [4] as
they too create scribbles during training. However,
they do not simulate a user correcting the initial
prediction. Additionally, their code is not public
and they are focused on a very specific data modal-
ity so comparing to their method would also be of
little use.

Comparison to bbox and extrema points should
also be taken with a grain of salt. In many cases
where the static input is sufficient, there will be lit-
tle to no difference between the resulting segmenta-
tion of our method, bbox, extrema points, or other
scribble methods. The benefit of our model is that
we can iteratively update the scribble to achieve the
desired segmentation in the cases where the initial
segmentation is not satisfactory.

To improve how our model performs on medical
data, a more diverse medical dataset is required.
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We tried to train models using only medical data
(CHAOS and Decathlon) instead of all the data.
We observed that models that were trained on a
combination of all the datasets, and not only the
medical data, were able to generalize better. The
problem with the CHAOS and Decathlon datasets
is that only certain organs and tissues are anno-
tated. This means that the network never learns
to segment bone, fat, or background as those areas
are never annotated in the data. A more exhaus-
tive search for segmentation datasets and especially
medical datasets with more variation would be ben-
eficial for future work.

The models described in the experiments section
used around 1 million parameters, which makes
them fairly small networks considering the level of
generalization and abstraction required by the task
we are trying to solve. Usually, more parameters
improve model performance, but more parameters
would likely overfit on the scribbles generated by
our algorithm in the training process which defeats
the motivation of our work - to use human-drawn
scribbles.

We believe that using human-drawn scribbles for
training could improve our model performance. It
would be extremely slow to have an actual human
react to network outputs during training. We could
however have a dataset of initial scribbles which are
drawn by humans while still using simulated second
iteration scribbles.

Our work shows that deep learning models may
be trained to simulate human-in-the-loop interac-
tions. The network is still able to react to actual
human inputs. Our model is fast due to the effi-
cient architecture and reacts well to adjustments
from humans, despite only being trained on a sim-
ulation of the human-network interaction.
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