
Ph.D. Thesis

Differentiable formulations
for inverse rendering

Morten Hannemose

Kongens Lyngby 2020



DTU Compute
Department of Applied Mathematics and Computer Science
Technical University of Denmark

Richard Petersens Plads
Building 324
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

ISSN: 0909-3192



“Any sufficiently advanced technology
is indistinguishable from magic”

- Arthur C. Clarke’s third law



Summary
Computer vision has become ubiquitous in the modern world and is applied in both
industrial and consumer applications, where it is used for things such as pose estimation
and 3D scanning.

However, most of the algorithms used for this have a disadvantage. They work by
computing positions of points, such as corners or 3D points, and then use only these
points to compute the result. This is an effective way of reducing the amount of data
taken into consideration, but it disregards possible uncertainties or ambiguities in the
detected points.

In this thesis, we will address this and other issues by using inverse rendering. In
inverse rendering, we fit a model to the objects present in the image. To fit the model
we use optimization, which is faster and significantly more robust when our model is
differentiable. This is why we focus on differentiable models in this thesis.

Our goal is to develop practical methods for common problems in computer vision
that are more accurate or widely applicable than previous methods. Specifically,
we contribute with two methods for common problems using differentiable inverse
rendering. The first is a method for camera calibration that uses all pixels of the
calibration artifact thereby overcoming problems of relying on a corner detector. The
second is a method for 3D scanning, where our method can reconstruct a 3D mesh
directly from images taken with a structured light 3D scanner, which enables us to
bypass the usual mesh reconstruction step.

In addition to this, we also provide a method for video frame interpolation, where
we use a neural network-based method to generate interpolated frames. We train the
neural network to minimize the differences between real and interpolated images, as a
form of inverse rendering. Additionally, we present a practical method for estimating
the pose of an object and a light source, again using a differentiable model. The
estimated poses can be used to compare a photograph to a rendering, to quantify
their differences.

Finally, we also present applications within industrial automation and augmented
reality, where camera calibration and 3D scanning play a key role.



Danish Summary
Datamatsyn er til stede overalt i den moderne verden og anvendes i både industrielle- og
forbrugerapplikationer, hvor det bruges til ting som f.eks. estimering og 3D-scanning.

De fleste af de dertil anvendte algoritmer har dog en ulempe. De fungerer ved at
beregne positioner af punkter, såsom hjørner eller 3D-punkter, og bruger derefter
kun disse punkter til at beregne resultatet. Dette er en effektiv måde at reducere
mængden af data, der tages i betragtning, men det ignorerer mulige usikkerheder eller
uklarheder i de fundne punkter.

I denne afhandling vil vi adressere denne og andre ulemper ved at bruge invers
rendering. I invers rendering tilpasser vi en model til de objekter, der findes i billedet.
For at tilpasse til modellen bruger vi optimering, som er hurtigere og betydeligt mere
robust, når vores model er differentiabel. Derfor fokuserer vi på differentiable modeller
i denne afhandling.

Vores mål er at udvikle praktiske metoder til almindelige problemer i datamatsyn,
der er mere nøjagtige eller bredere anvendelige end tidligere metoder. Specifikt
bidrager vi med to metoder til almindelige problemer ved hjælp af differentiabel
invers rendering. Det første er en metode til kamerakalibrering, der bruger alle
pixels i kalibreringsartifakten og derved lørser problemet med at stole blindt på
en hjørnedetektor. Det andet er en metode til 3D-scanning, hvor vores metode
kan rekonstruere et 3D-trekantsnet direkte fra billeder taget med en struktureret lys
3D-scanner, som gør det muligt for os at forbigå det sædvanlige netrekonstruktionstrin.

Derudover kommer vi også med en metode til interpolering af videobilleder, hvor vi
bruger en metode baseret på neurale netværk til at generere interpolerede billeder. Vi
træner det neurale netværk til at minimere forskellene mellem virkelige og interpolerede
billeder, som en form for invers rendering. Derudover præsenterer vi en praktisk metode
til at estimere position og orientering af et objekt og en lyskilde, igen ved hjælp af
en differentiabel model. De estimerede positioner og orienteringer kan bruges til at
sammenligne et fotografi med en rendering for at kunne kvantificere deres forskelle.

Slutteligt præsenterer vi også applikationer inden for industriel automatisering og
augmenteret virkelighed, hvor kamerakalibrering og 3D-scanning spiller en central
rolle.
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CHAPTER1
Introduction

1.1 Scope
This thesis focuses on fitting computer models to image data to extract useful infor-
mation. Our goal is to develop practical methods for common problems in computer
vision that are more accurate or more widely applicable than previous methods. We
accomplish this goal by providing differentiable models of objects present in the images,
such that we can extract the desired information by fitting our models to image data
with optimization. Usually, these problems are solved by two or more algorithms,
but our approach enables us to solve these problems with a single algorithm, which
lets the algorithm internally handle uncertainties and ambiguities without explicit
modeling of these.

The contributions in this thesis span multiple areas, from foundational topics as camera
calibration, to pose estimation, 3D scanning (see Figure 1.1 ), and applications of these,
with the overall goal of solving these problems in new ways with fewer limitations
than previous methods.

Solving these computer vision problems more accurately or in more situations has a
vast number of applications, whereof we will address specific applications within:

• industrial automation

• industrial quality control

• digital twins and how to compare to physical samples

• augmented reality

In this thesis, optimization has been used in most of the contributions, yet we have
not focused on the optimization itself, but rather used it as a tool. For this reason, we
have not described it in further detail, but we refer the reader to Nocedal and Wright
[NW06 ] for more details. The same goes for convolutional neural networks (CNNs)
for which we refer the reader to Goodfellow, Bengio, and Courville [GBC16 ].
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Figure 1.1: 3D scanning is one example of extracting information from images. The
figure depicts the 3D scanning of a bust of Hans Christian Ørsted. Left:
scanning with the bust with structured light and a stereo camera. Right:
a simplified version of the triangle mesh from the scanning. Photos by
the author.

1.2 Motivation
Being able to extract meaningful information from images is the goal of computer
vision, and there is therefore, unsurprisingly, a huge amount of work within this field.
This has brought us to a point today where we can take a photo of a dog with our
phone and it can almost instantly tell us which breed it is. We can also use the stereo
camera on our phone to capture a 3D photo of the dog, which gives us the depth of
each pixel in the image. To solve these computer vision problems the phone applies
deep neural networks and more classic computer vision algorithms. Then we take the
output the system has given us and use it to answer the question we actually wanted
answered. This could be, whether the dog is family friendly.

It is, however, very often that we fail to take into account that there are uncertainties
associated with these answers or that there might not be a single correct answer. The
dog could be a crossbreed thus having traits from multiple races. A lot of the time
a single output does not tell the whole story of the image because information is
discarded in the process of getting the simpler output. This can become a problem
when we use these outputs to do further computation to reach the actual answer we
were looking for, which is the case in many computer vision algorithms.

Many of the ways we extract meaningful information from images are based on points.
What this means is that an algorithm analyses the image and computes points from the
image. The algorithm detecting these points will often have a description associated
with the detected points, whether it is the location of the corner on a checkerboard, an
estimated point in 3D, or a computed feature from a SIFT descriptor [Low04 ]. These
points are then used as inputs for another algorithm that solely uses these points as
input to estimate the information that we desired in the first place. However, these
point-based methods have some drawbacks such as handling uncertainties, which we
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images result
detect

points
points

compute result

from points

(a) Example of a method that first detects points and then computes the result
from these points.

images result

render

images

estimated

result

compare to real images

update parameters

converged?
yes

no

(b) In inverse rendering the result is found by seeing how well images generated
from the result match the input images.

Figure 1.2: Conceptual comparison of a point-based method (a) and an inverse
rendering-based method (b). Note how the original images are used in
every iteration of the inverse rendering (b).

will discuss in Section 1.2.3 .

These drawbacks led us to focus on another method of extracting information from
images in this thesis. This method does not use points and therefore does not have
these drawbacks. It is as follows: make a model that can generate the type of images
we are working with from a set of parameters. Using this model, search for parameters,
such that the image synthesized is as close as possible to the target image. From the
estimated parameters we can then extract the information we wanted about the image
if we formulated the model correctly. This is the basic description of the method that
is referred to by many names such as analysis by synthesis, inverse graphics, or inverse
rendering. A conceptual example of inverse rendering is in Figure 1.2 .

The search for parameters is done with an optimization method. This is an algorithm
that iteratively refines the estimated parameters to minimize or maximize a given
objective function. Optimization methods that use access to gradients are faster and
more robust but only work for differentiable objective functions, which is why our
focus is on differentiable models.

To motivate our contributions further, we will in the two following sections introduce
two problems and how they are typically solved using point-based methods. These
problems are camera calibration and 3D scanning. We will also use these problems to
explain some drawbacks of the point-based methods in Section 1.2.3 . These drawbacks
also led us to provide improved solutions to these problems by using inverse rendering,
which are in Contributions A  and F .
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1.2.1 Camera Calibration
Any application of computer vision that involves 3D, such as those in industrial
automation or quality control, requires having a good understanding of where each
camera is in relation to other cameras, and which direction each pixel on the image
sensor corresponds to in the real world. Measuring this for a camera setup is called
camera calibration.
A camera calibration usually starts with using the camera to take pictures of a
checkerboard from a lot of different angles and positions. In each of these pictures,
the checkerboard is located, and a corner finding algorithm is used to find the pixel
coordinates of the corners. This is often done at sub-pixel precision. As the positions
of the checkerboard corners are known in 3D we can compute where the points will
project to on the image sensor if we have a calibrated camera and know from where
the pictures are taken. The distance between the detected and projected points is the
reprojection error. To obtain a camera calibration this error is minimized with respect
to the camera parameters and position and orientation of the camera in each image.
This is explained in more detail in Section 2.4 .

1.2.2 3D scanning
A calibrated camera is the starting point for making a 3D scanner. These have many
applications in industrial or recreative settings, such as checking for defects in a
produced part or to capture the aforementioned 3D photo of a dog. 3D scanning
with a camera can be thought of as equivalent to figuring out how far the object in
each pixel is from the camera. This is why cameras are well suited for 3D scanning
as each pixel in the camera is its own observation. This makes it much faster to
scan an object than methods only making a single observation at a time such as
consumer laser distance measures or a coordinate-measuring machine (CMM). There
are many ways of doing 3D scanning with cameras, such as time of flight, passive
stereo, structured light, and many more. An example of 3D scanning with structured
light is in Figure 1.1 .
For ease of explanation here, we will focus on methods using a calibrated stereo camera
setup, but most of the drawbacks mentioned later will be applicable to single camera
methods as well. If we can identify the same point in both images, we can measure
the distance of this point to the cameras by triangulation. In structured light, this
means that we project a sequence of patterns onto the scene to be able to uniquely
identify each point in the scene in both cameras. An example of such a unique coding
of the scene is described in Section 2.7 on page 16 . In the case of passive stereo, we
rely on the texture of the objects in the scene to identify the same points.
For each point in one camera, we need to locate a corresponding point in the other
camera. As the stereo setup is calibrated, this implies that we know the position of
the cameras relative to each other, we can restrict our search for the point in the
other camera to points on a line. This line is the epipolar line. To efficiently search
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for matching points, the images can be rectified. This is an operation that warps the
images such that each pixel in the rectified image will have its corresponding pixel on
the same row, and vice versa, consequently making all epipolar lines horizontal. Once
we have two matching points, we can triangulate which point in 3D the two points
correspond to, and this process can be repeated for all points in the images.

After doing this for all the corresponding points, we have a point cloud, i.e. a lot of
points in 3D but not a solid object. To convert it into a surface we need to apply a
surface reconstruction algorithm, such as Poisson reconstruction [KBH06 ; KH13 ]. In
this step, there is a smoothness/accuracy trade-off. This is because the estimated
points will have some noise in them and a surface that goes exactly through all of
them would not be desirable in most applications.

1.2.3 Drawbacks of point-based approaches
In each of the two previous examples, the algorithms are split into distinct parts.
In the camera calibration, the calibration parameters are estimated only from the
detected corner points in the images. This process assumes that all corners are
detected correctly without any regard for how certain the estimate is. This means
that points detected on an image that was out of focus will have the same weight as
points detected on a sharp image. There is no uncertainty passed on between the
two steps of the algorithm. These same issues occur in the 3D scanning when the
triangulated points are used for reconstructing the surface, without any regard for
uncertainty in the estimation of these points.

Another potential issue in the 3D scanning is the interpolation of pixel values. Com-
puting the rectified images requires resampling the pixel values, which means that
the pixels the algorithm is operating on are not pure samples from a single pixel
anymore. In the best case this will just blur out information, and in the worst case,
the interpolation takes place over a discontinuity in the image. If the discontinuity
were in focus then there would only have been a single line of pixels affected by the
edge before interpolating, but this will have increased to three pixels afterward. This
is a problem in structured light where the unique coding on the edge pixels will be a
linear combination of the two objects. The linear combination can yield a technically
valid coding which will have appeared at a very wrong place in the image, creating an
outlier.

1.2.4 Inverse rendering
To overcome the problems of the point-based approaches mentioned in the previous
section, we will go back to the image intensities in the image and use these directly
in our solutions, similar to what we described on page 4 , which we will call inverse
rendering. The word “rendering” here, is used to describe all kinds of generation of
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an image on a computer. This is important to clarify as it usually refers to image
generation methods in computer graphics such as rasterization and ray tracing.
Briefly explained, rasterization projects a triangular mesh to the image plane and
computes which pixels each triangle overlaps. A technique called z-buffering is used to
ensure that a pixel ends up with the triangle closest to the camera out of the triangles
overlapping the pixel. When rendering images in this way, it is common to get jagged
edges as each pixel points at only one triangle. To combat this, rasterization uses
anti-aliasing, which can be thought of as rendering the image at a higher resolution
and downsampling to obtain the final resolution. In this case, each pixel becomes an
average of multiple triangles. Because of this, the intensity in a pixel, as a function of
the position of an object, is not differentiable or even continuous.
Although rasterization is a hugely useful tool for computer graphics, it is not the best
tool of choice for inverse rendering. This is because optimizing a function that is neither
differentiable nor continuous is very hard. In fact, we have not used rasterization in
any of the works in this thesis. Instead, we have relied on other ways of rendering
the image such as using homographies to render images of planes (Section 2.6.1 ) and
other methods using the pinhole camera model.

1.3 Thesis outcome
During the completion of this thesis, we have produced several academic publications.
A list of these is on page vii , descriptions and discussions of them are in Chapter 4 ,
and the relevant publications are available as appendices to this thesis.
The main contributions of these publications are in using differentiable inverse rendering
to solve problems in computer vision in new ways, which has enabled us to create
algorithms that use the information present in the images more directly. We have
worked on a wide range of problems in computer vision from camera calibration,
to pose estimation, and to applying 3D scans in augmented reality. In particular
Contributions A and F introduce new methods with inverse rendering for the well-
known computer vision tasks of camera calibration and 3D scanning. In addition to
this in Contributions B and D we tackled problems in the interdisciplinary fields of
robotics and augmented reality.

1.4 Thesis structure
This thesis is divided into three main chapters. In Chapter 2 we will go through
background knowledge that is necessary to understand the contributions made in this
thesis. Following this is Chapter 3 , where we describe related work in the field of
inverse rendering, to familiarize the reader with alternative approaches. Last but not
least, in Chapter 4 we present and explain the contributions of this thesis. We also
present some additional contributions that are not present in the publications.
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In addition to these main chapters, there is an appendix at the end with the manuscripts
related to the topic of this thesis. These are Contributions A  to F . An overview of
these is on page vii .
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CHAPTER2
Background

In this chapter, we will introduce the terminology necessary to understand the contri-
butions of this thesis.

For easier readability we will stick to the following notation: bold and uppercase (A)
refers to matrices, bold (a) refers to vectors, and subscript h (ah) refers to vectors in
homogeneous coordinates, such that

ah =
[
sa
s

]
=


sax
say
saz
s

 , (2.1)

when a is a three-dimensional vector. Also note our use of subscripts x, y, and z to
refer to the elements of the vector a.

2.1 Pinhole camera
Most of the works included in this thesis use a camera to gather information about
the world. However, because the world has three dimensions, while the image from
a camera only has two, we need a model to describe how we project points in R3 to
the image plane of the camera. The most popular model for doing this is the pinhole
camera model [HZ03 ]. This can be written as

qx = px
fx

+ cx (2.2)

qy = py
fx

+ cy, (2.3)

where fx and fy are the focal lengths, and cx, cy is the principal point. We can also
write this in matrix form using homogeneous coordinatessqxsqy

s

 =

fx 0 cx
0 fy cy
0 0 1

pxpy
pz

 = (2.4)

qh = Kp. (2.5)
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Here qh is (qx, qy) represented in homogeneous coordinates. K is the camera matrix.

These equations assume that the camera is at the origin, and is looking in the z-
direction and is not rotated around z. This is the identity rotation. If this is not the
case, we need to apply a rotation and translation to the points before projecting them
such that the points get transformed to the coordinate system where the camera is at
the origin with identity rotation. Let Rc and tc be the rotation and translation of the
camera. Then we can project points by

qh = K(Rcp + tc) (2.6)
= K[Rc tc]ph (2.7)
= Pph, (2.8)

where ph is p in homogeneous coordinates and P is the 3× 4 projection matrix.

2.2 Representing rotations
In (2.7 ) above, we have represented the rotation as a 3 × 3 rotation matrix, which
is not a very good representation for optimizing as rotation matrices only span a
small subspace of all 3 × 3 matrices. Euler angles parameterize rotations as three
rotations around the x-, y-, and z-axis respectively, however, this parameterization
has singularities. These are often referred to as gimbal lock [HO18 ]. This makes
Euler angles well-suited only in situations where the optimized rotation can stay close
to the identity. In our contributions, we have mostly used quaternions to represent
rotations [Sho85 ]. Quaternions use four numbers to represent rotations and do not
have any singularities. The four numbers have the constraint that the squared sum of
all the numbers is 1, which can be enforced by constraining the optimization to only
take steps in the tangent space where this constraint is satisfied, or less elegantly by
re-normalizing the quaternion every time it is needed.

2.3 Lens distortion
When working with real cameras, the pinhole camera model is rarely sufficient to
describe the image formation process. We often need to be able to model distortion
caused by the camera lens. To do this it is useful to normalize the image coordinates,
such that they are centered around the principal point, which lets us readily compute
the distance to the principal point (r).

q̄ = q − c = (2.9)[
q̄x
q̄y

]
=
[
qx
qy

]
−
[
cx
cy

]
(2.10)

r2 = (q̄x)2 + (q̄y) 2 = ‖q̄‖2
2 (2.11)
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An often-used lens distortion model is Brown-Conrady [Bro66 ; Con19 ]. Here is a
simple example with only radial distortion.

rd = r(1 + k1r
2 + k2r

4 + k3r
6) (2.12)

= rdr(r) (2.13)
q̄d = q̄dr(r) (2.14)

There can also be terms that are not only a scaling factor on the radius, such as
tangential distortion. The above-given model and most of the more advanced distortion
models can be written as scaling for the radial distortion and a translation for the
tangential distortion as follows

q̄d = q̄dr(r) + dt(q̄). (2.15)

2.3.1 Inverting lens distortion
The models presented in the previous section are forward models, i.e. models that
take an ideal coordinate and computes where it ends up after going through the lens
distortion of the camera model. When doing inverse rendering, we often need to
compute the value at a certain pixel coordinate, which involves being able to invert
the lens distortion model. This is not to be confused with undistorting an image,
which is commonly done for distorted images, where the distortion model never needs
to be inverted. This is because one just needs to compute the distorted version of
each integer pixel coordinate to get the position where the distorted image should be
sampled.

Therefore, knowing how to invert lens distortion is useful , but the details of how to
do it are rarely discussed in the literature. Often, we work with only radial distortion.
Even if we only have up to r4 in dr(r) inverting the distortion requires solving a
fifth-degree polynomial, for which no closed-form solutions exist, so we must resort to
iterative numerical methods.

An iterative method for inverting lens distortion is implemented in the OpenCV
function undistortPoints() [Bra00 ]. This solves (2.15 ) approximately, by assuming
that dr(‖q̄‖2) ≈ dr(||q̄d||2) and dt(q̄) ≈ dt(q̄d). Now we can iteratively estimate the
undistorted q̄ using

q̄k+1 = q̄d − dt(q̄k)
dr (‖q̄k‖2) (2.16)

starting from q̄0 = q̄d. The appeal of this method is that it only requires forward
distortion to compute, but it has the disadvantage of being relatively slow to converge
and does not converge if the assumptions are too far off. This, however, only happens
for extreme distortions.
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Other approaches have been suggested in the literature such as the one by Drap and
Lefèvre [DL16 ], but these all have other drawbacks in accuracy or speed and are not
described here.

2.4 Camera Calibration
Doing a camera calibration means finding the parameters of a camera model such that
they describe a camera we have in real-life. For the pinhole camera with lens distortion
presented above, it means finding the focal lengths fx and fy, the principal point cx, cy,
and the distortion parameters k1, k2, k3. These all describe the relationship between
the direction of incoming light and where hits the image sensor and are referred to
collectively as intrinsics. The counterpart to these is extrinsics and describes the
relative or absolute poses of the camera(s) being calibrated. Here pose refers to both
the position and orientation of an object.

Again, note that the model presented in Sections 2.1  and 2.3 is only one example of a
camera model, but there exist many variations on this and even completely different
models. A good overview of different models can be found in Schops et al. [Sch+20 ].
The usual method for computing a camera calibration consists of three steps:

• detecting the calibration object (usually a checkerboard)

• finding features with sub-pixel accuracy

• fitting the camera model

If the setup has multiple cameras, we can capture images of the calibration object in
the same pose with each camera and let the relative pose of the camera be part of the
estimated parameters. When we capture multiple images of the calibration object,
we need to change the pose of the camera between each shot. It is worth noting that
changing the pose of the camera(s) or the pose of the calibration object are equivalent,
as long as the cameras do not change their poses in relation to each other. We will
restrict our explanation to 2D checkerboards, but the same three steps apply for other
calibration objects, such as three-dimensional ones.

There are multiple ways of detecting the checkerboard. One of them uses image filtering
to find the lines of the checkerboard and combines this with where there are saddle
points [Pla+14 ]. This, however, only gives us the corner points of the checkerboard
at integer pixel coordinates, which needs to be refined further to get a high-quality
camera calibration. A common method for this was created by Förstner and Gülch
[FG87 ], which is implemented in the OpenCV function cornerSubPix() [Bra00 ].
This uses the observation that the image gradients around a saddle point should
be orthogonal to the vector pointing to the saddle point, and iteratively refines the
detected point to maximize this. Later approaches have achieved higher sub-pixel
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precision in locating the corner by fitting a polynomial surface to the image intensities
around the corner [Ha+17 ] or using that the intensity at an offset from the corner
should be the same at the negative offset [Sch+20 ].

The final step of the camera calibration is to estimate the intrinsics. The most used
method for this is the one introduced by Zhang [Zha00 ]. Recall that we compute the
camera calibration by minimizing the reprojection error. The first step in Zhang’s
method is to compute a linear solution that minimizes an approximation of the repro-
jection error, followed by non-linear optimization to minimize the actual reprojection
error.

To increase the accuracy of the camera calibration further, this step is sometimes
followed by bundle adjustment [Tri+99 ]. Recall that in the previous estimation, the
positions of the points of the checkerboard in R3 were known. However, the calibration
artifact is manufactured by some physical process and will have deviations from the
ideal shape. This can be something as simple as a piece of paper not being perfectly
flat. In the bundle adjustment step then all parameters are optimized again, in
addition to the positions of the features on the calibration artifact. This does of course
introduce more degrees of freedom which can lead to overfitting, but with enough
images, this is not a problem.

2.5 Triangle meshes

When we 3D scan an object, being able to represent it as a surface instead of a point
cloud is a more efficient representation, as it is more efficient to do computations on
and takes up less space when stored. The most common way of representing surfaces
on the computer is with a triangle mesh. A single triangle of the mesh is given by
three vertices which are points in R3. These are connected by lines, such that they
form a triangle in R3. The inside of the triangle is then describing the surface of the
object. We can create more triangles, and if the triangles share some of their edges
such that the same two vertices are part of two different triangles, we can describe a
larger surface. If all edges in a triangle mesh are shared with another triangle, the
mesh describes a closed surface. A triangle edge can also be shared by more than two
faces, in the case of a triangle mesh that contains multiple materials.

Triangle meshes are a very efficient representation of a surface when working with a
graphics processing unit (GPU). Additionally, with a triangle mesh, we are enforcing
that the represented surface is locally planar which is a smoothness constraint. We
will exploit both properties in Contribution F . An example of a triangle mesh is on
the right in Figure 1.1 on page 3 .
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2.6 Homographies
As mentioned in the introduction, we are interested in using inverse rendering for many
problems, one of them being camera calibration. For this we need a differentiable
way of rendering a plane with a known texture. To do this we need to know where to
sample the texture-function of the plane in each pixel. Using the undistorted pixel
coordinate as we obtained in the previous section, we can use a homography to map
the pixel coordinates on the image plane to the local coordinates on the plane of the
calibration object. A homography is a full-rank 3× 3 matrix that can describe the
mapping between the image planes of any two cameras that are viewing the same
plane in 3D. The mapping uses homogeneous coordinates, like so

bh = Hah = (2.17)sbxsby
s

 = H

axay
1

 , (2.18)

where H is a homography that maps from a to b. Inverting the homography matrix
gives the mapping that goes the other way, which can be done analytically as shown
here for the sake of completeness

H−1 =

1
det(H)

H22H33 −H23H32 H13H32 −H12H33 H12H23 −H13H22
H23H31 −H21H33 H11H33 −H13H31 H13H21 −H11H23
H21H32 −H22H31 H12H31 −H11H32 H11H22 −H12H21

 . (2.19)

As this is a closed-form expression, the derivative of it can be computed. Note that
the inverse involves the determinant of H as well, but as homographies work purely
with homogeneous coordinates they are also scale-invariant, and the division by the
determinant can be skipped when implementing it. For more details on homographies,
the reader is referred to Hartley and Zisserman [HZ03 ].

2.6.1 Homography based rendering of planes
With the 3× 4 projection matrix P from (2.8 ) we can project points from the global
coordinate system to the image plane of the camera. When we combine this with the
rotation and translation (Rp, tp) of the plane in R3 that we want to render, we can
project points from the plane as follows

qh = P
[
Rp tp
0 1

]
u
v
0
1

 , (2.20)

where (u, v) is a point on the plane. The third coordinate is zero, as we have defined
our plane in the x-y directions, such that z = 0 everywhere on the plane. The fourth
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coordinate is one because it is in homogeneous coordinates. We can remove the column
of the last matrix that is multiplied with zero

qh = P
[
Rc,1 Rc,2 tp

0 0 1

]uv
1

 (2.21)

= H

uv
1

 , (2.22)

where Rc,i is the ith column of Rc, and H is a 3× 3 matrix that maps points on the
plane to the image plane of the camera with homogeneous coordinates. It is therefore
a homography. When we invert this homography, it maps from the image plane to the
plane we want to render. We can therefore render the plane by mapping each pixel
with the homography, which gives us the point where we should sample the texture
function for each pixel.

2.7 3D structured light scanning
As we mentioned in the introduction, 3D scanning a scene with structured light
requires the projection of a series of patterns onto the scene that can uniquely code
each point in the scene. In this section we will introduce phase shifting with two
patterns and unwrapping with the heterodyne principle [RRT97 ], which we have used
in multiple of our contributions. There are many other ways to do this, but we have
chosen this method for its high accuracy, yet simple implementation.

We project the patterns such that they vary in a direction that is approximately
parallel to the epipolar lines. For a camera setup with horizontal separation between
the cameras this means horizontally varying patterns. We will code the x-coordinate
of the projector with a linear global phase signal, where the left side of the projector
has θ = 0 and the right side has θ = 2π. We will now describe how to generate
patterns to project, and how to estimate θ in each pixel of the captured images.

We can now project a sinusoidal pattern onto the scene that has a total of n1 periods.
We will shift this pattern s1 times, giving us s1 different images we need to project

P1 =
{

cos
(
n1θ + 2πs

s1

)
, s ∈ {0, 1, . . . , s1 − 1}

}
. (2.23)

We do the same with n2 periods, and generate s2 of these patterns,

P2 =
{

cos
(
n2θ + 2πs

s2

)
, s ∈ {0, 1, . . . , s2 − 1}

}
. (2.24)
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As these patterns lie in the range [−1; 1] we scale them to the intensity range of the
projector before projection. We can now fit a sinusoid to the intensities observed
in each pixel for the images obtained when projecting P1 and P2. We will refer to
the phase offset fitted for these as θ1 and θ2 respectively. The sinusoid can be fitted
in several ways, such as with a fast Fourier transform (FFT) or a linear system of
equations. The number of shifts s1 and s2 needs to be four or larger, with larger
values giving a more accurate estimate, due to less influence of noise. We have often
used values of s1 = 16, s2 = 8.

The phases θ1 and θ2 are measurements of θ with wrapping. As our estimates will
include some noise, θ1 and θ2 are given by

θ1 ≡ n1θ + ε1 (mod 2π) (2.25)
θ2 ≡ n2θ + ε2 (mod 2π). (2.26)

We can do an approximate unwrapping by applying the heterodyne principle. We
refer to this as the phase cue

θc ≡ θ2 − θ1 (mod 2π) (2.27)
≡ (n2 − n1)θ − ε2 + ε1 (mod 2π). (2.28)

If we have chosen n1 and n2 such that n2 = n1 + 1, then the phase cue is a noisy
measure of θ

θc ≡ θ − ε2 + ε1 (mod 2π). (2.29)

We can use the phase cue to compute how many times θ1 has wrapped. This is the
order

o1 =
⌊
n1θc − θ1

2π

⌉
, (2.30)

where b·e means rounding to the nearest integer, which makes it robust to noise. Then
we can unwrap θ1 with our order o1

θ1,uw = 2πo1 + θ1

n1
(mod 2π). (2.31)

This should be equal to θ, except for the noise. However, note that θ1 here is divided
by n1, which drastically decreases the influence of the noise-term ε1. θ2,uw can be
computed similarly to θ1,uw, and we can take the average to get the most accurate
estimate of θ

θuw = 1
2 (θ1,uw + θ2,uw) (mod 2π). (2.32)

This final average should be computed in a way that is angle-aware, such that (ε, 2π−ε)
would average to something close to 0.
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Now that we have estimated θ in each pixel of the camera, and if we have a stereo
camera setup, we can look for the point with the corresponding θ along the epipolar
line in the other camera. Once we have found this point, we can triangulate the
position of the point in R3. If we have a calibrated projector and a single camera, we
can still triangulate the point, as we already know the x-coordinate of this point in
the projector. Once we have triangulated all the points, we have a point cloud.

It is worth noting that all the patterns projected with the projector are continuous.
Because of this, a projector with a lower resolution will still generate an approximately
continuous signal, especially if its slightly out of focus. Because of this, the resolution
of the projector is not very important and can be an order of magnitude smaller than
the resolution of the camera with the system still being able to perform well.

We will finally discuss the error propagation in phase shifting. The phases θ1 and θ2
are least-squares fits to their respective sets of images (P1 and P2). Our unwrapped
phase θuw, is however not the least-squares fit to P1 and P2. Once we rectify the
images and match and triangulate the points, the points in the point cloud are further
away from being least-squares fits to the original data. This happens because each
step of this process at best is a least-squares fit to the output of the previous step.

2.8 Pose estimation

Recall that the pose is the position and orientation of an object. Pose estimation can
refer to multiple different tasks, but central to all of them is to estimate the pose of
one or more objects. For example, doing a camera calibration involves estimating the
pose of the camera for each picture. It could also be human pose estimation where
the task is to estimate the pose of each body part of a person in one or more images.
In this thesis we will use it to refer to the problem of estimating the pose of an object
in one or multiple images.

The most common way of estimating the pose of an object uses points on the object
in 2D and the corresponding position of these points in 3D. From this the pose of
the object can be found as the non-trivial least-squares solution to a linear system of
equations. However, establishing these correspondences between 2D and 3D points is
by no means an easy problem. One way of solving it is to use a feature descriptor
such as SIFT [Low04 ] on each point for matching or to attach a unique marker to
each point of the object.

More recent approaches use a large database of images from the object from almost
every viewing angle. A statistical model is then fitted to these, such that the pose of
the object can be inferred. Examples of this is in the related work of Contribution E .
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2.9 Obtaining derivatives
Recall that we are interested in being able to optimize a digital model to fit our
observations as well as possible. To do this we need to know how a change in the
parameters of our model affects the result. Gradients are able to describe the shape
of the objective function around the current parameter estimate, which helps the
optimization algorithm decide in which direction and and how far it should take its
next step.

When we are writing the code for a program to solve a problem, we must decide how
we obtain these gradients. In this thesis, we have used four different methods for
obtaining gradients, all of which are widely used. In the following sections we will go
through these.

2.9.1 Analytical gradients
Using analytical gradients is often considered the gold standard of computing deriva-
tives. To obtain these one simply takes out pen and paper or a computer algebra
system (CAS) and uses this to derive the explicit mathematical formulas for the
gradients of the objective function. Once this has been done and implemented in code,
they are very efficient to use as the gradients only involve the exact computations
needed to obtain them. However, there is a large overhead involved for the person
implementing the method, as implementing the derivative is often as much work or
more than implementing the objective function and introduces the risk of having an
error in the derivation of the derivatives.

2.9.2 Automatic differentiation (AD)
Automatic differentiation is a term that covers several methods that can compute
derivatives of a function, automatically and without using approximations. They do
this by storing additional information when evaluating the function, that can be used
to apply the chain rule recursively to evaluate the derivatives. The following two
sections introduce the two most used methods for AD: reverse mode AD and forward
mode AD. For a more thorough introduction to the topic of AD the reader is referred
to the book by Griewank and Walther [GW08 ].

2.9.2.1 Reverse mode AD

In situations where it is necessary to compute the derivatives of a small number of
variables with respect to a large number of input parameters, reverse mode AD is the
most efficient. It has a long history, but its usage has exploded in recent years as it is
used to train neural networks, but when using it for this purpose it is referred to as
backpropagation [RHW86 ].
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Computing reverse mode AD consists of systematic recursive application of the chain
rule and has two steps: a forward and a backward pass. During the forward pass, the
function is evaluated as usual, but it is necessary to store the function evaluation as a
graph with each node only doing a simple computation. In the backward pass, one
starts from the output of the function, where the derivative of the output is 1 per
definition. Then the computation goes back through the graph, and for every node
the derivative of the output with respect to the inbound value is computed using the
chain rule. An illustration of this concept is in Figure 2.1 . The green numbers in the

Figure 2.1: Example of using reverse mode AD to compute ∂
∂xfx(x, y) and ∂

∂yfx(x, y),
where fx(x, y) = x√

x2+y2
, x = −2, and y = 1. Green numbers contain

the derivative of the output with respect to the variable above. First,
the function (black numbers) is computed from left to right, and then
the derivative of the output (green numbers) is computed by applying
the chain rule from right to left, meaning that the resulting derivatives
are all the way to the left.

figure are computed by evaluating the local gradient of the unit and multiplying it
with the gradient to the right of it. For example the derivative of the output with
respect to the output from the square root in Figure 2.1 is 0.4 as(

− 1
2.242

)
︸ ︷︷ ︸
derivative of
1/x at 2.24

·(−2.00) = 0.40. (2.33)

2.9.2.2 Forward mode AD

In a situation where we have a large number of variables that we need the derivatives
with respect to a smaller number of input parameters, forward mode AD is a good
choice. With it, we can compute the derivative of any number of outputs, which makes
this a very efficient method when we want the Jacobian matrix, as is required for
Levenberg-Marquardt [Lev44 ; Mar63 ]. Levenberg-Marquardt is a pseudo-second-order
method for nonlinear optimization that switches back to gradient descent when it is
far from the minimum.
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The principle of forward mode AD is similar to reverse mode AD in that the compu-
tation is split into its elementary operations, the difference being that each number is
augmented with a vector containing the derivatives of this number with respect to
each of the input parameters. Therefore, for the input parameters these vectors will be
one-hot encoded, which means that they will have zero everywhere, except for a one at
the vector index corresponding to the input. The function is then evaluated only once
without storing the computation graph, and each arithmetic operation uses the chain
rule to compute the corresponding vector of its output. This can be implemented
in software using custom classes and overloading common operators. An example of
using forward mode AD is in Figure 2.2 .

Figure 2.2: Example of using forward mode AD to compute ∂
∂pfx(x, y) and

∂
∂pfy(x, y), where p = [x y]T, f(x, y) = p√

x2+y2
, x = −2, and y = 1.

The two green numbers below every variable are the derivatives of the
black number with respect to x and y respectively. All computations
are carried out from left to right, the green numbers are computed using
the chain rule, and the resulting derivatives are thus all the way to the
right.

Additionally, forward mode AD with a single input parameter is equivalent to using
dual numbers, which is a mathematical formalization of forward mode AD that
we will not cover, but instead refer the reader to Hoffmann [Hof16 ]. Jets are a
similar mathematical concept that can describe forward mode AD with multiple input
parameters [Pus96 ].

2.9.3 Finite differences approximation
Finite differences are a method to approximate the gradient of a function using only
evaluations of the function itself. This makes it a very simple method to implement
when the function is already implemented. They are thus very well suited to check
whether an implementation of analytical gradients or AD is correct.

Finite differences can be derived from Taylor’s theorem. The first order Taylor series
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of f at x can be written as

f(x+ h) = f(x) + d

dx
f(x)h+O(h), (2.34)

where O(h) is the error term. We can rearrange this to get an approximation of the
derivative

d

dx
f(x) = f(x+ h)− f(x)

h
+O(h). (2.35)

This is forward differences, and the error is linear in the step size h. Backward
differences is similar except that the Taylor series is evaluated at f(x− h). We can
reduce the error to O(h2) by starting from a second order Taylor series

f(x+ h) = f(x) + d

dx
f(x)h+ 1

2
d2

dx2 f(x)h2 +O(h2). (2.36)

This can also be evaluated x− h

f(x− h) = f(x)− d

dx
f(x)h+ 1

2
d2

dx2 f(x)h2 +O(h2) (2.37)

We can subtract (2.36 ) from (2.37 ), so the zeroth and second order terms cancel such
that we obtain

d

dx
f(x) = f(x+ h)− f(x− h)

2h +O(h2), (2.38)

which gives us the central differences approximation of the gradient. When using finite
differences to compute the derivatives with respect to many parameters we need twice
the number of function evaluations with central differences as we do with forward
differences, as f(x) is the same for all parameters. There are many other variants of
finite differences for computing gradients, even of higher order, but forward, backward,
and central differences are the most widely used.

The major disadvantage of finite differences is that they are very slow to compute, as
they require at least one additional function evaluation per parameter we need the
gradient with respect to. They are also the only of the presented approaches that only
yield approximations of the gradients, which can be a problem for the convergence
of the optimization. Another problem is that it is not a parameter-free method, but
requires the user to choose the parameter h. This can be fixed to a small percentage
of x which works well in most cases, but still runs into problems once x is very close
to zero.
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CHAPTER3
Related Work

Attempting to solve problems in computer vision by creating a model to generate
images and finding the model parameters that best match the observed images is the
core of analysis by synthesis which is also referred to as vision by inverse rendering.
There is a long tradition of using this approach to solve problems in vision, which
goes back to early work in the field [Hor77 ; Gre81 ].

Much of the work that has been done in differentiable rendering has focused on making
models that are differentiable with respect to the appearance of the scene, but not
with respect to the position or shape of the objects in the scene [KPC93 ; Mar98 ;
Max+19 ]. Such work is based on methods that are differentiable with respect to
the illumination and appearance of the scene, however because they only work with
the appearance these methods are not differentiable with respect to the geometry.
Therefore, we do not consider them to be relevant in the context of this thesis.

To recover the parameters that make a rendering model best describe a scene, opti-
mization is an often-used approach. In some situations, gradients are infeasible to
obtain, which makes solving the optimization problem slower and less robust. In
these situations, most people rely on the Nelder-Mead method, also known as the
downhill simplex method, which only needs function evaluations to optimize the
function [NM65 ]. Rockwood and Winget [RW97 ] worked with fitting meshes to images.
They were not able to differentiate their specific rendering process, and they used a
combination of simulated annealing and the Nelder-Mead method to optimize their
objective function. However, having access to gradients can greatly improve the
convergence, speed, and robustness of the optimizer. These factors have created great
interest in making rendering differentiable.

The following four sections will present different approaches that have been taken
to make rendering differentiable. First, in Section 3.1  we will present task specific
methods, where the renderer only works for a very specific task, which gives more
freedom to make assumptions. Following this in Section 3.2  we present work on
creating differentiable renderers able to render arbitrary scenes. Then in Section 3.3 

we present methods that render images by using models that get pixel intensities from
one or more other images, and finally in Section 3.4 we present methods that modify
the image formation process to make it easier to differentiate.

For an in-depth survey of general inverse rendering methods, the recent survey paper
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by Kato et al. [Kat+20 ] is recommended.

3.1 Purpose built methods
In many cases, it is sufficient to create a renderer for a specific task, which enables
more simplifications and assumptions to be made such that computing the derivatives
is an easier task.

Early work following this approach was done by Fua and Leclerc [FL95 ], in which they
describe a method for surface reconstruction from multiple views based on optimization.
However, to have a differentiable objective function they do not render images and
compare the pixel values directly. Instead they use a set of predefined points on each
triangle face that they project to the images and interpolate the intensity of this
point in each image. Their objective function is then to minimize the variance of
the interpolated intensities for each predefined location, which is simpler to compute
derivatives of. In addition to this they also have a prior on the shape and that the
albedo of the surface is smooth. They used Maple (a CAS software) to compute and
implement the gradients.

The work by Smelyansky et al. [Sme+02 ] lies very close to the spirit of this thesis.
In the paper they create a differentiable renderer for triangular meshes and use it
to optimize both the vertex positions, and the camera positions by minimizing the
pixel-wise difference to observed images. They use a Lambertian reflectance model
to render the surface and have an albedo for each vertex that is also part of the
parameters they optimize. In each pixel they compute the intensity as an average of
all triangles within the pixel, weighted by how much of the pixel they take up. This is
what makes their renderer differentiable. As this is a very simple way of rendering,
they introduce the assumption that there are no shadows or occlusions in the observed
images.

The works by Rehder et al. [Reh+17 ; RS17 ] use differentiable rendering to render
checkerboards for camera calibration of a moving camera. Their rendering uses a
polynomial model for illumination of the checkerboard and incorporates both rolling
shutter effects and sampled motion blur, which they use to estimate the shutter time
and the rolling shutter of a camera. They only render and compare the images on the
edges of the checkers.

Gkioulekas et al. [Gki+13 ] computed derivatives of renderings which they used to
do inverse rendering to measure the physical light scattering properties of various
materials. They did this by shining a collimated laser beam through a sample of
the liquid and observing the resulting scattering for varying angles. They compute
gradients with finite differences but can compute them efficiently by reusing light
fields. Additionally, they exploit the noisy images generated when rendering with
ray-tracing to obtain noisy gradient estimates, which enables them to use stochastic
gradient descent to optimize their parameters.



26 3 Related Work

A similar approach was used by Velinov et al. [Vel+18 ] to estimate the thickness of the
tooth enamel. They did because doing realistic renderings of teeth depends not only
on the shape of the teeth but also geometry below the surface. They restricted the
enamel shape to vary along certain directions to obtain a practical parameterization
of the enamel thickness.

In Contribution F , we also introduce a differentiable renderer for a specific purpose. Our
renderer works for rendering images of triangular meshes illuminated by a projector.

3.2 General methods
Having a differentiable renderer able to render any kind of scene seems like a wonderful
concept, which should eliminate the need to create a differentiable renderer for a
specific purpose, such as we have done multiple times in this thesis. However, all the
methods presented in this section have drawbacks making them not applicable in our
situations, but it is a rapidly advancing field. In this section we will focus on methods
for triangular meshes.

Loper and Black [LB14 ] were the first to create a general framework for differentiable
rendering. They hand-engineer the gradients, which they compute completely sep-
arately from the rendering itself. To compute them they segment the image into
pixels that lie entirely on a face, and pixels on boundaries, and combine image space
derivatives to approximate the true derivatives.

Liu et al. [Liu+17 ] extended this approach to support bidirectional reflectance distri-
bution functions (BRDFs) and environment maps. Later Kato, Ushiku, and Harada
[KUH18 ] created a simple textured renderer for use with neural networks. Common
for these three approaches is that the rendering is done with rasterization, followed by
approximating the gradients using operations in screen space.

Li et al. [Li+18 ] used ray tracing to render the images, and were able to compute exact
gradients using reverse mode AD, but relies on sampling values along edges to account
for visibility, which increases the number of samples necessary to get low variance in
the gradients. This is improved in work by Loubet, Holzschuch, and Jakob [LHJ19 ],
where they use a change of variable in the rendering equation to make it differentiable
with respect to the scene parameters. However, all the methods using ray tracing
with backpropagation are limited with a quickly growing memory footprint that limits
their use to only simple scenes of lower resolution. This was partly addressed by
Nimier-David et al. [Nim+20 ], who re-cast the backpropagation for rendering, such
that the entire computation graph no longer needed to be stored. In this reformulated
approach they do however not provide a means to compute partial derivatives of
object positions, as these affect scene visibility. It can be noted that the general
differentiable renderers that only compute approximations of the gradients are based
on rasterization, while the ones with accurate gradients are based on ray tracing and
that all of them use reverse mode AD.
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3.3 Image-based rendering
In image-based rendering, images are used as the input to create a model of how to
render similar images. This is a simpler way of creating photo-realistic images than
traditional rendering, as the many details required for photo-realism can be drawn
from other images.

Active appearance models (AAMs) [CET98 ] are an early example of this type of
rendering, but still creates realistic enough images to directly compare them least-
squares with real images. This is done by fitting a statistical model of the shape of
texture of the object to a large database of images. This statistical model is fitted by
doing a principal component analysis (PCA) on both the shape and intensity of the
images, and using only the most important principal components, such that the model
can be parameterized with a smaller number of parameters. In the paper they use this
to create an AAM of human faces able to describe 98% of the variance of the original
data using only 80 parameters. Interestingly, they use an approximation to find the
gradients, by assuming that these are linear in the difference image. From a randomly
sampled displacement in parameter space, the true difference image can be computed.
By repeating this process many times, they use multivariate linear regression to be
able to compute the gradient of the parameters from a difference image. Using this
they can fit the AAM to new images.

Eisert [Eis02 ] uses an inverse rendering based approach for camera calibration with a
calibration object with a known geometry. Knowing the poses of two frames, one can
use the geometry of the calibration object to warp pixels from one frame to the other,
which can be thought of as an optical flow where the constraint is that there should
be constant brightness. He then does a first order Taylor expansion of the objective
function and minimizes this. In addition to this he uses a multi-step approach where
the images are smoothed a lot initially, with the amount of smoothing being reduced
each time the problem is solved.

Least-squares matching (LSM) is a method for estimating the transform between
a reference and a real image [Luh+13 ]. Multiple different types of transformations
can be estimated such as the affine or projective transform, both of which are can
be computed with bilinear interpolation. The objective is to minimize the squared
difference between the reference image and the transformed target. To make the
images match as well as possible, part of the transformation is also to estimate a linear
transformation of the image intensities.

LSM is somewhat similar to our work in Contribution A , where we use an analytical
function for the reference which gives us higher accuracy. Additionally, we use multiple
views simultaneously and a protective camera model with lens distortion which is
more advanced. Our work in Contribution C  is also a type of image-based rendering,
as we generate new frames by warping neighboring video frames.
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3.4 Approximate renderings
As is visible from the previous sections, creating a differentiable rendering method is
hard. Instead of attacking the problem by computing derivatives for regular rendering
methods, other people have looked at reformulating the rendering operation itself, to
make it differentiable.

Nguyen-Phuoc et al. [Ngu+18 ] did this in their work where they replaced the entire
rendering pipeline by a deep neural network. Because all the operations in a regular
neural network can be differentiated. As input for the network they use a voxel
grid on which they do some 3D convolutions, followed by reshaping to 2D to do 2D
convolutions until finally outputting an image with the correct number of channels.
As they only use the neural network to render the images, the rendering automatically
becomes differentiable. However, they were only able to train their network for a
limited amount of shaders and having a voxel grid as input and a fixed output size
makes it of limited use as a renderer.

Rhodin et al. [Rho+15 ] created a renderer where they render simple objects as spheres
in a fully differentiable manner by replacing them with Gaussians where the visibility of
a point is determined by the probability. They apply their method to pose estimation
of humans with a multi-camera setup.

Work in the same vein was done by Palazzi et al. [Pal+18 ], in which they present a
method for differentiable rendering of a silhouette. They do this by rendering the
triangles of the mesh in a semi-transparent fashion, where pixels inside the triangle
linearly become more opaque the further they are from the edge of a triangle.

A somewhat similar approach was used in the soft rasterizer introduced by Liu et
al. [Liu+19 ]. Here they also use triangle meshes but replace the z-buffering and
rasterization steps in a traditional rendering pipeline with differentiable versions
thereof. Namely, they make the rasterization step soft by giving each triangle a
probability of belonging to a pixel as a function of the signed distance to the edges
of the triangle. They put this signed distance through a sigmoid function and use
a function similar to softmax to do differentiable z-buffering. They then put these
together, which yields a rendering where every pixel in the image has a contribution
from every triangle, even those that would not be visible in a traditional rendering.

Overall, these approximate rendering approaches are different from what we have done
in this thesis. However, the smoothing we introduce in Contribution A  is similar to
these approaches, as it in both cases is the key to the formulation being differentiable.
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CHAPTER4
Contributions

In this chapter, we describe the contributions that have been made during this Ph.D.
This chapter is intended to serve as an overview of the contributions in the publications
and how they fit in perspective to one another. We will not convey all details of each
publication, but instead, mention the most important contributions in each work. The
papers are available in their entirety as appendices to this thesis in Contributions A  

to F . In addition to this, we will discuss some work that did not make it into the
articles and discuss possibilities for future work.

4.1 Homography-based rendering
We mentioned in Sections 1.2.1 and 2.4 that almost all previous methods for camera
calibration rely on estimating points in 2D and minimizing the reprojection errors. As
having an excellent camera calibration is essential for so many computer vision tasks
and taking into account the difficulty of accurately locating corner points in images,
and the point uncertainties not taken into account in current pipelines we decided to
revisit the problem of camera calibration in Contribution A . As we mention in the
introduction the point-based methods for camera calibration rely on detecting corner
points in images and only uses the positions of the detected points to compute the
calibration. The existing methods for localizing these points introduces some errors in
the position, and these errors will propagate to the calibration. That the lines of the
checkerboard also contain information away from the points is not exploited by these
methods.

Our formulation of camera calibration minimizes the pixel-wise squared difference
in intensity between the rendered and real images. To do this we introduce a novel
differentiable rendering method for planes. This uses homographies as described in
Section 2.6.1 on page 15 such that we can render the image by sampling a texture
describing the checkerboard. To make the texture differentiable and to simulate blur,
we convolve our texture function with a Gaussian kernel. Our rendering method
is computationally efficient, even while computing gradients, which means that it
is feasible to use it for optimization. We use forward mode AD for the gradients,
as the number of parameters that we need the derivative with respect to in each
pixel is relatively small. This enables us to compute the derivative of many outputs,
which makes it cheap to compute the Jacobian and use Levenberg-Marquardt. Our
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Figure 4.1: Comparing our method for camera calibration on synthetic data against

Ha et al. [Ha+17 ] and OpenCV [FG87 ; Bra00 ] with varying number
of images used to calibrate (n). Left: Varying σn with fixed σ = 0.5.
Right: Varying σ with fixed σn = 1%. OpenCV n = 3 lies above the
plotted area. Figure from Contribution A  .

contribution is thus a rendering-based pipeline for camera calibration where we only
use the detected corner positions to obtain a starting point for the optimization.

To evaluate how close our estimated camera calibration was to the ground truth,
we considered comparing each of the parameters to the ground truth value of the
parameter, however, this is hard to do meaningfully especially for distortion parameters,
as they can slightly counteract each other. Additionally, with a camera calibration,
this will give a number for each parameter in the calibration, which will make it hard
to compare two calibrations as different parameters can be closest to the true value in
the two calibrations. This motivated us to introduce the per-pixel reprojection error,
which enables us to compute a single number that measures how far an estimated
camera calibration is from the ground truth camera. We do this by measuring the
distance between where each pixel projects with the ground truth intrinsics compared
to the estimated intrinsics.

First, we evaluated our method on synthetic data, as we know the ground truth
camera parameters in this case. Here we performed better than the current point-
based methods, even under the influence of Gaussian noise and blur, as one can expect
to see in real images. The comparison can be seen in Figure 4.1 . We also evaluate
with real data, where we do not have access to the ground truth camera calibration.
Therefore, we use the points detected by a good point-based method [Ha+17 ] to use
instead of ground truth and detect the points using this method on a separate test set.
For camera calibrations with few images (n < 5), our method performs better than
the others. With more images, Ha et al. [Ha+17 ] get very similar reprojection errors
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on the test set, and both of our methods are close to the lowest possible reprojection
error, which we find by computing the reprojection error of the calibration for the
training set as well.

In this work, we needed to invert the Brown-Conrady lens distortion model [Bro66 ;
Con19 ] to know where to sample the rendering function. As mentioned in Section 2.3 ,
this can be done iteratively in a naive manner. However, for this work, we used a more
efficient method. With the notation from Section 2.3 , computing the undistortion is
equivalent to finding a root of

f(s) = srddr(srd)− rd, (4.1)

since when srd = r then f(s) = 0. We can divide f by rd and use Newton-Raphson
to find s in an iterative fashion

sk+1 = sk −
dr(skrd)sk − 1
d
dsk

(skdr(skrd))
, (4.2)

starting from s0 = 1. This can be extended to tangential distortion as well by applying
multivariate Newton-Raphson, but we did not use tangential distortion in this work.
To the best of our knowledge, we are the first to apply this kind of optimization to
the inversion of lens distortion. This converges in more cases than the method used
by OpenCV [Bra00 ] and uses fewer operations to converge. We also apply the inverse
function theorem to compute the exact gradients of the inverted lens distortion.

For the work we did in Contribution B , having an accurately calibrated camera
was essential. In this contribution, we describe a robot setup for the difficult task
of automating the production of carbon fiber parts. The project is focused on low
volume production of low weight parts, which necessitates a flexible robot setup. This
production is currently done by manual labour in Denmark, which makes it an obvious
target for automation. The setup uses a grid of suction cups to grip a woven carbon
fiber ply that has been pre-impregnated with epoxy which can drape the ply onto a
mold.

In this process, we use three separate camera setups: a camera to find the position
of the ply before picking it up, and two structured light setups with stereo cameras
capable of producing 3D point clouds, one under the robot and another above the
mold onto which the ply is draped.

The ply is stretchable in some directions, which it needs to be when draping it onto
the curved mold, which is why the suction cups have been linked in a flexible grid
that can adapt to the forces of the ply and the shape of the model. The flexibility
causes the system to be underactuated, which means that there are more degrees of
freedom in the system than there are motors controlling it. Because of these extra
degrees of freedom, we cannot determine exactly where the suction cups are, but we
need to know where the suction cups will make contact with the ply. To find the
suction cups we use the 3D scanner underneath the robot, which gives us a 3D point
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(a) Digital composite. Right: Lit by ring light. (b) Retro-reflectors visible through the ply.

Figure 4.2: Images from a camera in the stereo setup below the robot. Note the
high visibility of the retro-reflectors when illuminated by the ring light
of the camera.

cloud of the suction cups, which is not directly convertible to a pose. One of the parts
I contributed to was in finding the pose of the suction cups from the point cloud. We
did this by first segmenting the point cloud into quadrilaterals, each containing one
suction cup, and fitting a planar surface within each segment with RANSAC [FB81 ].
Following this, we used a CAD model of the suction cup and aligned this with the
point cloud with the iterative closest point (ICP) method [BM92 ] to obtain the pose
of each suction cup.

We mentioned on the facing page that there were three camera setups involved. The 3D
scanner above the mold is to measure the quality of the drape and the camera over the
pickup table is to find the ply before picking it up. To estimate the position of rotation
of the ply before picking it up, we create a homography using the four corners of the
flat table during calibration. We find an initial estimate of the pose by thresholding
the black ply on the white table. This threshold is hard to determine exactly, due to
a smooth transition in image intensities between the table and therefore we refine the
estimate of the pose of the ply further. We do this by rendering a smoothed version of
the ply outline in a very similar fashion to our work in Contribution A and comparing
it to the pixel intensities.

Following this work, we also devised another method to estimate the pose of the suction
cups in the robot setup from Contribution B . For this we place a retro-reflective
sticker on the perimeter of each suction cup and illuminate it with a ring light on each
camera, to get clear images of the suction cups, such as those in Figure 4.2 . Then we
do inverse rendering to pose estimate the suction cups by applying a similar approach
with homographies to render planes, but with a linear ramp function and having an
optimizable parameter for the brightness of the rendering. We can estimate the pose
in 3D because we have a calibrated stereo setup. Examples of the fitted images can
be seen in Figure 4.3 . This has the same advantages as our camera calibration of not
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(a) Original image (b) Initial render (c) Initial diff. (d) Final render (e) Final diff.

Figure 4.3: Examples of fitting rings to images of retro-reflectors on suction cups.
Top row: suction cup without ply, bottom row: suction cup obscured by
ply. In the difference images, red indicates positive differences while blue
indicates negative. All images in the bottom row have been multiplied
by a factor of 20 for visualization. These examples have been chosen
as they have initial parameters that are visibly off from the expected
parameters.

needing to detect a discrete circle or compute points. The only point in time we detect
a circle is to initialize our method, which we do with a Hough transform [DH72 ]. We
compare our new method to the previous method in Table 4.1 . We do see a bias of
less than one mm in the z-direction. This is not caused by subsurface scattering or
the thickness of the sticker as one could be inclined to believe, as both would have the
effect of decreasing the number.

Because we no longer need to capture a full 3D scan of the suction cups, this approach
has a much shorter acquisition time and does not require having a CAD model of
the suction cups. Most importantly it is also able to work when the suction cups
are currently gripping a ply, as there are small holes in the woven ply that let the
retro-reflective light through, which can be used to improve the estimate of the robot
state while the ply is gripped. This is important as more accurate knowledge of the
robot state gives better control over the draping process. For suction cups covered by
the ply, our method still works very robustly as long as we can initialize the circle
such that it has some overlap with the correct circle.
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Table 4.1: Evaluation of our method for pose estimation of suction cups that uses
retro-reflectors. As we do not have access to ground truth poses, we
report the difference between this method and the poses estimated by
our ICP-based method from Contribution B . It can be seen from the
differences that the poses estimated by both methods are very similar.

Position [mm] Rotation[°]
x y z

Mean difference -0.05 0.06 0.76 2.61
Standard deviation 0.69 1.15 0.40 0.91

4.2 Optimization with triangle meshes
After the robot has draped the ply onto the mold, we need to inspect the quality of
the drape. For this we have the structured light stereo camera mounted above the
mold, which we use to scan the draped ply. Although we in Contribution B  worked
solely with point clouds, converting it to a surface such as a triangular mesh is more
efficient for processing, storage, and visualization. Motivated by the drawbacks of most
methods for mesh reconstruction mentioned in Section 1.2.3 and by the promising
results we got from using inverse rendering in the other applications, we turned to
applying inverse rendering to the problem of 3D reconstruction with a structured light
3D scanner setup, which we present in Contribution F  .

The de facto standard method for 3D reconstruction with structured light is to unwrap
the phases, match the points, and triangulate these to get a 3D point cloud as described
in Section 2.7 on page 16 . Following this, a mesh is fitted to the point cloud, which
is usually done with a type of Poisson reconstruction [KBH06 ; KH13 ]. Each of the
many steps in this process means that the final surface is not a least-squares fit to the
original image data, as we also mention in the end of Section 2.7 .

Our inverse rendering based approach represents the reconstructed surface as a triangle
mesh and uses optimization to directly move the vertices in the mesh to their optimal
positions, such that the difference between the real images and the renderings is
minimized. To handle cases where the camera has lens distortion, we can use (4.2 )
to compute the undistorted pixel coordinates. This effectively fuses all steps of the
3D scanning into one end-to-end algorithm, which comes with many advantages, the
biggest of these being that the surface is a least-squares fit to the original image
intensities.

To initialize our optimization, we did our experiments starting from a simple sphere,
and we demonstrate the same sphere working as initialization for three different objects.
To make our optimization problem easier when our initial guess is as far off, as it is in
this case, we optimize on the unwrapped phase φuw1

 from (2.32 ) on page 17 . During
1In Contribution F we optimize on Xi,j

c , which is equal to φuw/(2π)
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Figure 4.4: Our method reconstructing the Stanford Bunny starting from a sphere.
From left to right: Initial mesh (sphere), after 50 iterations, after 750
iterations, and the converged result. The final reconstruction has 13 780
vertices and has a symmetric volume difference of 0.30%, when compared
to the ground truth. Figure from Contribution F .

the optimization where we optimize directly on the phase, we perform remeshing
operations at regular intervals such that we are able to progressively increase the
fidelity of the mesh. After a fixed number of iterations, we stop remeshing and change
the objective function to optimize on the original phase shifted images {P1, P2} in
Section 2.7 . An example of this process can be seen in Figure 4.4 . We are of course
also able to use another reconstruction method to obtain our initial guess.

The amount of reflected projector light in a pixel is a measure of how strong the
measurement is. By reconstructing the mesh from all views at once, pixels are
automatically weighed by the amount of reflected light from the projector, which is a
proxy for signal strength. We compute all required gradients analytically on the GPU.
We assume that each pixel in each camera has a fixed amount of background light
and a fixed percentage of the light from the projector hitting the camera, which we
estimate from the ground truth images.

With an accurate 3D shape and a well-calibrated camera, we have almost everything
we need to be able to recreate a scene on the computer. We provide a method to
do this in Contribution E . First, we provide a practical method for estimating the
pose of a camera, a known object, and a point-like light source. Then, we give a
step-by-step description of how to select an appearance model appropriate for the
reflectance properties of the object. Our pose estimation method is based on finding
the silhouette of the object in a way that is differentiable, i.e. without rasterization.
We find it by projecting the edges of the mesh to the image plane of the camera and
traversing them to extract the silhouette. We require that the input images have been
segmented into object, shadow, and background, such that we can extract a ground
truth silhouette of the object. The pose estimation is then done by minimizing the
difference between the ground truth and rendered silhouettes. Our method also works
for multiple camera positions and multiple light source positions. We demonstrate the
usefulness of our method by creating renderings of a selection of scenes with different
objects, see Figure 4.5 . By comparing these renderings to the photographs, we can
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photograph (x) rendering (y) (max(y − x, 0))1/γ (max(x− y, 0))1/γ

Figure 4.5: Pixel-by-pixel comparison of renderings with a photograph enables a
detailed investigation of the virtues and deficiencies of an appearance
model. We have used our practical alignment technique from Contribu-
tion E to pose estimate the objects and light sources. Difference images
were brightened with γ = 2.2 to visualize the deficiencies more clearly.
Figure from Contribution E  .

quantify the differences, and we use this tool in the process of selecting the rendering
model. This quantitative comparison can also be used to identify the shortcomings of
the current rendering methods and to see where the geometry differs.

The poses estimated by our method can also be used as an initial guess for an inverse
rendering method, e.g. one of the methods in Section 3.2  , to minimize the differences
in pixel intensities between rendering and photograph even further. This is relevant
because most inverse rendering methods need to be initialized relatively close to the
correct solution.

When one has used this method to determine the most appropriate appearance model
for a given object and found the appearance parameters that best describe it, we have
captured the appearance of the object. The method can then be used to quantitatively
to compare a manufactured part with this digital twin. This will take into account
both the appearance and shape, because if just one of them has errors, this will be
apparent in the difference image.
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Figure 4.6: Diagram illustrating the cyclic fine-tuning process when predicting frame
Î1.5. The model (f) is used to predict new frames, from frames the model
has already predicted. In a perfect model, I1 and I2 would be identical
to Ĩ1 and Ĩ2, their differences can be computed on the training data.
Our cyclic fine-tuning therefore minimizes the differences illustrated by
the dotted red lines, when we fine-tune the model to predict frame Î1.5.
Figure from Contribution C  .

4.3 Applications
In Contribution C we tackle the problem of video frame interpolation, i.e. generating
additional frames in a video to increase the frame rate. This is a slightly different
way of doing inverse rendering, in that the model that generates the synthetic images
is replaced by a convolutional neural network (CNN), but we are still minimizing
the differences of pixel values. Our model works by getting two images as input and
outputting another one. As all the operations in our network design are differentiable,
we can apply backpropagation and optimize the weights in our network to make it
output in-between frames in a video. Our CNN uses the rectified linear unit (ReLU)
activation function [GBC16 ] and a bilinear sampling function, both of which are
differentiable almost everywhere, which lets us use backpropagation to train the model.
One of our important contributions is the introduction of cyclic fine-tuning. This uses
our cyclic loss, which uses frames predicted by the model to predict frames that we
have ground truth for, see Figure 4.6  . The quality of the reconstructed frame will be
higher if the frames it is predicted from are also high. Because of this, we can use the
cyclic loss as a proxy for the performance of the network on the current data, and
therefore fine-tune the network on the testing data.

Our method was able to outperform all methods with publicly available implementa-
tions, and we have published our code as well.2  We note that video frame interpolation
is still a hot topic and since our paper, others have created models that perform better,
notably the recent work by Niklaus and Liu [NL20 ].

2https://github.com/MortenHannemose/pytorch-vfi-cft 

https://github.com/MortenHannemose/pytorch-vfi-cft
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We chose to use a CNN for this task because this is a problem where formulating a
model to generate the correct output is bordering on the impossible for humans, but
the neural network can learn the correct function from large amounts of data. We
have abundant amounts of data available, as videos can be readily obtained from the
internet, and every second frame withheld to generate the ground truth. This means
that we do not have the problem of lacking training data, which is so often the case
when using deep learning methods. In our setting, the optimizer is used to find the
weights of the model, instead of finding the scene parameters directly, and we even get
a model that works on a wide variety of scenes if we have the variety in our training
data. In this way we are also able to tackle harder problems in inverse rendering, for
example, if 3D scanning and modeling the appearance of an object is too challenging,
we can use CNNs to provide us with a plausible prediction of the output, even in
these hard cases.

Finally, in Contribution D , we present a proof of concept for generating spatial
attention cues that can be used to guide a user’s visual attention in an augmented
reality application. Doing this requires both accurate camera calibration and 3D
scanning. Augmented reality is a topic that has been seeing increased interest in
recent years, and the ability to guide a user’s attention in a non-obtrusive way is
essential if we are to make augmented reality applications easier to interact with,
without alienating the users of the application.

Our concept uses a stereo structured light setup to do 3D scanning and then uses
the projector to project a series of images that create the illusion of motion in the
static scene. To accomplish this we start with doing a camera calibration of both
cameras and the projector, followed by using this to do two separate 3D scans using
each camera together with the projector, to also reconstruct points only visible in
one camera. We use the two computed point clouds to render an image of the scene
from the point of view of the projector. This enables us to apply filters to this image
and project the resulting images back onto the scene, which creates a convincing
appearance of continuous motion on selected parts of the scene. Videos of the effect
are available online.3  

For this project, we also went through the process of writing the software for and
building our own structured light scanner, which let us have direct access to the
projector and cameras. We needed to do this in order to have direct access to the
same projector that did the scans because we needed to project the motion generating
patterns from exactly the same point of view.

4.4 Discussion
From our work on camera calibration in Contribution A we also got additional insights
into how the accuracy of a calibration artifact influences the calibration. In our

3http://people.compute.dtu.dk/jnje/illusory-motion 
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synthetic data, we used a texture with a finite resolution mapped to a plane. Here we
observed that increasing the resolution of the checkerboard texture we used yielded a
lower per-pixel reprojection error, even for very high-resolution textures (we ended up
using a 20 000 × 15 000 texture). This indicates that even small imperfections in the
calibration artifact can affect the accuracy of the calibration. This could also be why
we are not seeing better performance for all the real data, as a real checkerboard is
only as accurate as the manufacturing process used to produce it. These observations
also make sense when we consider that our method has the assumption that the
checkerboard is perfect.

Therefore, an interesting avenue for future work would be to expand the method,
to allow for slight imperfections in the checkerboard. This could be done by doing
something similar to bundle adjustment that some camera calibrations do. In this
step, each point on the checkerboard is assumed to be unknown and is also found
using optimization, which lets the algorithm account for checkerboards that are not
completely flat or with not exactly square checkers. One approach to implement this
bundle adjustment step into our rendering process would be by having each point be
part of the optimization and letting the plane for each corner be defined by the best
fitting plane to the neighboring points of the corner. This would enable us to reuse
the homography-based rendering while letting us describe non-square checkers and
non-planar checkerboards.

Additionally, it should be mentioned that we did not use this method in the subsequent
contributions, as our method was only designed to render normal checkerboards.
However, in the calibrations we needed to do, we used a ChArUco board, which is a
checkerboard with ArUco markers on the checkers [Gar+14 ]. This makes it possible
to detect a partially visible checkerboard, which in turn makes it easier to capture
calibration images with features close to the image edges. We did this because the
distortion parameters found by a calibration are only a good description for the part of
the image plane that contains features. In future work, it would thus also be relevant
to expand our method to handle other types of checkerboards.

In Contribution D  , we spent a significant amount of time on getting the setup for
generating images taken from the location of the projector to work. We did consider
using a beam splitter instead of generating it by projecting the 3D point clouds, which
would have enabled us to project and capture images using the same lens. However,
this would have made the hardware setup more complicated. Additionally, having 3D
information about the surface gave us the possibility of pursuing depth-aware versions
of the illusion. One could imagine compensating for the light falloff from the projector
using the inverse square law and to make the effect more viewpoint invariant by using
the normals of the surface, and possibly incorporating multiple projectors.
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CHAPTER5
Conclusion

In this thesis, we have introduced and discussed the research that has been carried
out during the past three years of Ph.D. studies. Through our research efforts, we
have produced several scientific publications, wherein we provide solutions to several
problems we identified, that have applications within a wide range of fields, such as
industrial automation, quality control, and digital twins.

The research undertaken during this project has followed a largely exploratory approach,
guided by the principle of tackling relevant problems we identified along the way.
Our research has led us to explore both the mathematical aspects of finding and
implementing derivatives by hand and through the more practical work in building
and programming our own 3D structured light scanner. Thus, the path we have taken
was not determined in advance but has materialized as a consequence of the findings
we did along the way. We are therefore pleased to see that there is a common thread
running through the contributions made in this thesis.

Our journey started with being part of a bigger project in automation, where we were
faced with the challenges of integrating computer vision in a robot system, which we
describe our solution to in Contribution B . One of these challenges was estimating the
pose of the suction cups in the robotic setup, which we ended up trying two different
methods for, with our second method being based on inverse rendering. Based on
the efficiency and simplicity of this homography-based rendering method, we saw an
opportunity to use the method to create an improved camera calibration method,
which we did in Contribution A  . This required us to modify the method to work for
whole frames and finding derivatives of intrinsics and extrinsics.

During our work with differentiable rendering for camera calibration, we were inspired
to also apply it to the problem of 3D reconstruction for structured light, which
resulted in Contribution F . In this work we contribute with a method that can take
images of structured light phase shifting and from these directly reconstruct a mesh
representation of the object in the images.

Following this, we were inspired by the difficulty of digitally recreating even a simple
photograph. This led us to do the work presented in Contribution E  , where our
contribution is a practical method for pose estimation of an object with known
geometry and a point-like light source and a guideline on how to iteratively refine the
appearance model of the object. This can be used to render the same scene on the
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computer to compare to the photograph, which can among other things be used to
identify deficiencies in the appearance model.

Between these, we were inspired by the many recent advances in computer vision
that have been driven by deep learning and set our sights on a different application
of inverse rendering, namely frame interpolation of video sequences, which we did in
Contribution C  .

Finally, in Contribution D we contribute with a method for being able to guide
the attention of a user in augmented reality, for which we used a calibrated stereo
camera-projector setup and 3D scanning of the scene.

The highlights of our contributions can be summarized as follows. We have:

• Created and evaluated a method for accurate camera calibration and evaluated
the performance on real and synthetic data in Contribution A  .

• Devised a formula for comparing a camera calibration to ground truth in
Contribution A  .

• Provided a simple method for inversion of the Brown-Conrady lens distortion
model.

• Presented a practical method for estimating the pose of an object and a point-like
light source in Contribution E  .

• Presented a framework for quantitative comparison of a rendering and a photo-
graph and described how to refine the appearance model to match the photograph
better in Contribution E  .

• Developed a method for reconstructing a mesh directly from structured light
images in Contribution F  .

• Presented an improved method for frame interpolation in video sequences using
convolutional neural networks (CNNs) in Contribution C  .

• Developed demonstrators in robotics and augmented reality that could benefit
from our methods (Contributions B  and D ).

• Derived an elegant method for inverse rendering of planes in Contributions A  

and B .

With these contributions we have, as we originally intended, developed practical
methods for common problems in computer vision that are more accurate or more
widely applicable than previous methods.
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ABSTRACT

The most prevalent routine for camera calibration is based on the detection of well-defined feature points on a
purpose-made calibration artifact. These could be checkerboard saddle points, circles, rings or triangles, often
printed on a planar structure. The feature points are first detected and then used in a nonlinear optimization to
estimate the internal camera parameters. We propose a new method for camera calibration using the principle
of inverse rendering. Instead of relying solely on detected feature points, we use an estimate of the internal
parameters and the pose of the calibration object to implicitly render a non-photorealistic equivalent of the optical
features. This enables us to compute pixel-wise differences in the image domain without interpolation artifacts.
We can then improve our estimate of the internal parameters by minimizing pixel-wise least-squares differences.
In this way, our model optimizes a meaningful metric in the image space assuming normally distributed noise
characteristic for camera sensors. We demonstrate using synthetic and real camera images that our method
improves the accuracy of estimated camera parameters as compared with current state-of-the-art calibration
routines. Our method also estimates these parameters more robustly in the presence of noise and in situations
where the number of calibration images is limited.

Keywords: camera calibration, inverse rendering, camera intrinsics

1. INTRODUCTION

Accurate camera calibration is essential for the success of many optical metrology techniques such as pose
estimation, white light scanning, depth from defocus, passive and photometric stereo, and more. To obtain
sub-pixel accuracy, it can be necessary to use high-order lens distortion models, but this necessitates a large
number of observations to properly constrain the model and avoid local minima during optimization.

A very commonly used camera calibration routine is that of Zhang.1 This is based on detection of feature
points, an approximate analytic solution and a nonlinear optimization of the reprojection error to estimate the
internal parameters, including lens distortion. Oftentimes, checkerboard corners are detected using Harris’ corner
detector,2 followed by sub-pixel saddle-point detection, such as that of Förstner and Gülch,3 which is implemented
in OpenCV’s cornerSubPix() routine. This standard technique can be improved for example by more robust and
precise sub-pixel corner detectors4,5 or use of a pattern different from the prevalent checkerboard.6,7 A different
line of work aims at reducing perspective and lens-dependent bias of sub-pixel estimates.8,9 In the work of
Datta,10 reprojection errors are reduced significantly by iteratively rectifying images to a frontoparallel view and
re-estimating saddle points. Nevertheless, such techniques are still dependent on how accurately and unbiased
the corners/features were detected in the first place. Perspective and lens-distortion are then not considered
directly, as their parameters are known only after calibration. Instead, the common approach is to try to make
the detector mostly invariant to such effects. However, for larger features such as circles, it is questionable
whether these can be detected in an unbiased way without prior knowledge of lens parameters. In addition, the
distribution of the localization error is unknown and least-squares optimization may not be optimal.

In this paper, instead of relying solely on the sub-pixel accuracy of points in the image, we render an image of
the calibration object given the current estimate of calibration parameters and the pose of the object. This non-
photorealistic rendering of the texture of the calibration object can be compared to the observed image, which
lets us compute pixel-wise differences in the image domain without interpolation. Because we are comparing
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differences in pixel intensities, we can model the errors as normally distributed which closely resembles the noise
characteristics usually seen in camera images. This process is iterated in an optimization routine so that we are
able to directly minimize the squared difference between the observed pixels and our rendered equivalent.

To ensure convergence of the optimization, the error must be differentiable with respect to camera parameters,
object pose, and image coordinates. We ensure this by rendering slightly smoothed versions of the calibration
object features.

2. RELATED WORK

We use a texture for our implicit rendering. This bears some resemblance to the version of texture-based camera
calibration11 where a known pattern is employed. We thus inherit some of the robustness and accuracy benefits
that this method earns because it is not relying exclusively on feature extraction. Our optimization strategy is
however simpler and more easily applied in practice as compared with their rank minimization problem with
nonlinear constraints.

The work by Rehder et al.12 is more closely related to ours. They argue that an initial selection of feature
points (like corners) is an inadequate abstraction. As in our work, they use a standard calibration technique
for initialization. With this calibration, they implicitly render the calibration target into selected pixels to get a
more direct error formulation based on image intensities. This is then used to further refine different calibration
parameters through optimization. Their approach results in little difference from the initial calibration values in
terms of intrinsic parameters. Instead, they focus on the use of their technique for estimating line delay in rolling
shutter cameras and for inferring exposure time from motion blur. Rehder et al. select pixels for rendering where
they find large image gradients in the calibration image. Our pixel selection scheme is different from theirs: we
use all the pixels that the target is projected to, and our objective function is different.

In more recent work, Rehder and Siegwart13 extend their direct formulation of camera calibration12 to
include calibration of inertial measurement units (IMUs). In this work, the authors introduce blurring into their
renderings to simulate imperfect focusing and motion blur. We also use blurring, and their objective function is
more similar to ours in this work. However, they still only select a subset of pixels for rendering based on image
gradients, and they, again, did well in estimating exposure time from motion blur but did not otherwise improve
results over the baseline approach.

In terms of improved image features, Ha et al.7 proposed replacing the traditional checkerboard with a
triangular tiling of the plane (a deltille grid). They describe a method for detecting this pattern and checkerboards
in an image and introduce a method for computing the sub-pixel location of corner points for deltille grids or
checkerboards. This is based on resampling of pixel intensities around a saddle point and fitting a polynomial
surface to these. We consider this approach state-of-the-art in camera calibration based on detection of interest
points, and we therefore use it for performance comparison.

3. METHOD

Our method builds on top of an existing camera calibration method. This is used as a starting guess for the
camera matrix K0, the distortion coefficients d0 and the poses of each calibration object Ri0, ti0. We use this
to render images of calibration objects, which we compare with images captured by the camera. Based on this
comparison, the optimizer updates the camera calibration until the result is satisfactory. An outline of our
method is in Figure 1.

The rendering is based on sampling a smooth function TG that describes the texture of the calibration object.
The initial calibration with a standard technique reveals which pixels the calibration target covers. Each of these
pixels is undistorted and projected onto the surface of the calibration object to get the coordinates for where to
sample TG. This inverse mapping from pixel coordinates to calibration object coordinates is advantageous with
respect to calculating the gradient used in optimization. Each sampled TG value is compared with the intensity
of its corresponding pixel, and the sum of squared errors is the objective function that we minimize.
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Figure 1: Overview of our method with a checkerboard as an example. All images are crops of a larger image.
Difference images: Red represents positive values and blue represents negative values. For clear visualization,
we have multiplied the focal length by 1.01 in our initial guess. Note that the converged difference image still
resembles a checkerboard pattern because we do not compensate for the board’s albedo.

3.1 Projection of points

Let us introduce a function that projects points in R3 to the image plane of a camera, including distortion

P (K,d,p) =

[
x
y

]
. (1)

Here, K is a camera matrix, d is a vector of distortion coefficients, and p is the point we are projecting, where
the elements are

K =



fx 0 x0
0 fy y0
0 0 1


 , d =

[
k1 k2 p1 p2

]
, p =



px
py
pz


 . (2)

P is then implemented as follows. First, the points are projected to normalized image coordinates:

[
xn
yn

]
=

1

pz

[
px
py

]
, r2 = x2n + y2n. (3)

The normalized points are distorted using the distortion model of Brown-Conrady.14,15

[
xnd
ynd

]
=

[
xn
yn

] (
1 + k1r

2 + k2r
4
)

+

[
2p1xnyn + p2

(
r2 + 2x2n

)

2p2xnyn + p1
(
r2 + 2y2n

)
]
, (4)

and the distorted points are converted to pixel coordinates

[
x
y

]
=

[
fxxnd + x0
fyynd + y0

]
. (5)



3.2 Rendering

Let each calibration board have its own u, v coordinate system, and let Ri and ti describe the pose of the ith
board. Let rij denote the ith column of Ri. The 3D position of a point on a board is then

p(i, u, v) =
[
Ri ti

]



u
v
0
1


 =

[
ri1 ri2 ti

]


u
v
1


 . (6)

Using a camera matrix K and distortion coefficients d, we can project this point to the image plane
[
x
y

]
= P(K,d,p(i, u, v)). (7)

We can solve for u, v in terms of x, y in the above expression and obtain a new function:
[
u
v

]
= P−1(K,d, i, x, y). (8)

As mentioned, we use a function to define the texture of the calibration board (checkerboard, circles, deltille
grid, or likewise). Let us call this texture function T(puv). Because natural images are not always sharp, we
introduce a blurry version of the texture map by convolving it with a Gaussian kernel in u and v. This has the
additional advantage that the texture map becomes smooth, which makes the objective function differentiable.

TG(puv, σu, σv) = (Gσu ∗Gσv ∗ T)(puv). (9)

This blur is applied in texture space, but we actually want it to be uniform around the interest point in image
space. Thus, the standard deviations σu and σv, need to be corrected according to the length of the positional
differential vector of the projection to the image plane. We introduce this quantity as

Mu =

∣∣∣∣
∣∣∣∣
∂P(K,d,p(i, u, v))

∂u

∣∣∣∣
∣∣∣∣
2

. (10)

Inserting Equations (8) and (10) in Equation (9), we obtain a function that enables the rendering of an image
of the calibration object:

Ci(x, y, σi,j) = TG

(
P−1 (K,d, i, x, y) , σi,j/Mu, σi,j/Mv

)
, (11)

where Mv is the same as Mu but with respect to v and σi,j is a measure of how blurry the image is around the
jth interest point on the ith calibration board. This implies that the formula is only valid in the neighborhood
of this point, and therefore we introduce

Ni,j (12)

to describe the set of pixel coordinates where the rendering is accurate. We choose Ni,j to be the pixels where
the corresponding u, v coordinate is no further away than one half of the interest point spacing in Manhattan
distance given by the initial camera calibration. For convenience of notation, let us define a set containing all
Ri, ti, and σi,j

β =
{
Ri, ti : i ∈ {1, . . . , ni}

}
∪
{
σi,j : i ∈ {1, . . . , ni}, j ∈ {1, . . . , nj}

}
, (13)

where ni is the number of calibration boards and nj is the number of interest points on each calibration board.
Using Equations (11) to (13), our optimization problem is then

K̂, d̂, β̂ = arg min
K,d,β

ni∑

i=1

nj∑

j=1

∑

x,y∈Ni,j

(
Ci(x, y, σi,j)− Ii(x, y)

)2
, (14)

where Ii(x, y) is the intensity of the pixel at x, y in the image containing the ith calibration board. We pa-
rameterize Ri as quaternions and solve Equation (14) using the Levenberg-Marquardt algorithm.16,17 Because
Equation (9) is defined to give values between 0 and 1, in the case where σ = 0, our optimization problem is
equivalent to maximizing the sum of pixels on white parts of T while minimizing the sum of pixels corresponding
to black parts of T.



3.3 Computation of P−1

Recall that P−1 is the function that, given a camera calibration and the pose of a calibration board, transforms
from x, y in pixel space to u, v coordinates on the board. The first step in computing this is to invert Equation (5)
by normalizing the pixel coordinates [

xnd
ynd

]
=

[
x−x0

fx
y−y0
fy

]
. (15)

Inverting Equation (4) is not possible to do analytically, so we use an iterative numerical approach.18 Note
however that we can compute analytical derivatives of the inverse of Equation (4) by applying the inverse function
theorem. To map the undistorted normalized coordinates to the calibration object, we combine Equations (3)
and (6):

s



xn
yn
1


 =

[
ri1 ri2 ti

]
︸ ︷︷ ︸

Hi



u
v
1


 . (16)

From this, it is clear that Hi is a homography transforming from the space of the ith calibration board to the
normalized image plane. We invert the homography to perform the mapping

s



u
v
1


 = H−1i



xn
yn
1


 . (17)

Because the Levenberg-Marquardt algorithm is gradient-based, we need derivatives. We designed our texture
function TG to be smooth and differentiable, and fortunately the function P−1 is also differentiable, which implies
that Ci is differentiable. Our implementation uses dual numbers for computing analytical derivatives.

4. RESULTS

When comparing a camera calibration to the ground truth, one could measure errors of each parameter individ-
ually,11 but this is difficult to interpret, especially for distortion parameters as they can counteract each other.
Motivated by this, we introduce per-pixel reprojection error, which measures the root mean squared distance in
pixels between points projected with the true and estimated camera intrinsics. For each pixel, the image plane
coordinates x, y define a line in R3 along which we select a point qxy that projects to this pixel:

P(K,d,qxy) =

[
x
y

]
, (18)

where K is the true camera matrix and d are the true distortion coefficients. We can now compute the per-pixel
reprojection error E by using the estimated parameters to project the same points. Computing the differences,
we have

E =

√√√√∑

x,y

∣∣∣∣
∣∣∣∣P(K̂, d̂,qxy)−

[
x
y

]∣∣∣∣
∣∣∣∣
2

2

, (19)

where K̂ is the estimated camera matrix, d̂ are the estimated distortion coefficients and x, y sum over all possible
pixel locations.

4.1 Synthetic data

We generate a set of 500 images of size 1920 × 1080 with a virtual camera with focal length f = 1000 each
containing a single 17 × 24 checkerboard. The images are rendered so that the pixel intensities lie in the range
[0.1; 0.9]. Figure 2 shows examples of these images. Each image is blurred by filtering it with a Gaussian kernel
with zero mean and standard deviation σ. After this we add normally distributed noise to each pixel with zero
mean and standard deviation σn, examples of this can be seen in Figure 3.



Figure 2: Sample images from our synthetic image dataset.

σ = 0.5, σn = 0 σ = 0.5, σn = 1.5 σ = 0.5, σn = 3 σ = 0, σn = 1 σ = 1, σn = 1 σ = 2, σn = 1

Figure 3: A corner from a checkerboard in a synthetic image with various levels of blur and noise added.

We select n random images from these and use the checkerboard detector from Ha et al.7 with default pa-
rameters to detect points. After this, we use the standard method by Zhang1 to compute the camera calibration.
This is a calibration we compare with (Ha et al.), but also our initial guess for Equation (14). We do this for
n ∈ {3, 20, 50} and for varying values of σ and σn. For each n, σ and σn we perform 25 trials with randomly
sampled images. The results of these experiments are in Figure 4. For comparison with OpenCV,18 we use the
detected points as initialization for cornerSubPix,3 with a 5 × 5 window. As the images are rendered without
distortion, we do the calibration without distortion as well.

We observe that our method performs better than Ha et al.7 and OpenCV3,18 for each n across various levels
of noise and blur, except for n = 3 in cases with much blur. We also observe that our method is consistently
better in noisy situations.
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Figure 4: Comparison of our method with Ha et al.7 and OpenCV3,18 for varying number of images used in
calibration (n). Left: Varying σn with fixed σ = 0.5. Right: Varying σ with fixed σn = 1%. OpenCV n = 3 lies
beyond the plotted area.



Figure 5: Sample images from our real image dataset.

4.2 Real data

When comparing camera calibrations on real data, an often reported measure is the reprojection error of all points.
That is however not something we are able to do as our method incorporates the constraint of the calibration
object geometry, and the reprojection error will thus per definition always be zero. Based on Figure 4, the
points detected by the detector from Ha et al.7 are clearly quite accurate, which motivates us to use it as a
pseudo-ground truth.

We use a dataset of 128 images at a resolution of 3376× 2704, each containing a 12× 13 checkerboard. We
randomly select 64 images to use as our test set, and detect points in them with Ha et al.7 which we use as
pseudo-ground truth. Then we select n of the images not in the test set and use them to compute the camera
intrinsics. For each image in the test set, we use the already detected points together with our camera calibration,
to compute the pose of the checkerboard, which in turn allows us to project points to the camera, and thereby
measure a reprojection error. For each n we partition the 64 images in the training set into non-overlapping
sets of size n and do the camera calibration for each of them. Figure 6 and Table 1 show the performance of
our method compared to Ha et al.7 and OpenCV.3 For n < 5 our method performs better and has a lower
standard deviation. For large n, Ha et al.7 achieve an extremely similar reprojection error, but the points
we are computing the reprojection error against are also detected by their method. It can also be seen that
the reprojection error of their method on the training data approaches the same values from below, so the best
achievable test set reprojection error is limited either by the camera model or the accuracy of the detected points.
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Figure 6: Reprojection error for images in the test set of our real dataset as a function of n. Bars on each point
show ±1 standard deviation.



Table 1: Data from Figure 6. ± indicates the standard deviation of the reprojection error.

n 2 3 4 5

OpenCV 0.61± 0.52 0.37± 0.10 0.32± 0.15 0.33± 0.14
Ha et al. 0.55± 0.36 0.37± 0.11 0.30± 0.15 0.26± 0.03
Ours 0.50± 0.22 0.36± 0.09 0.30± 0.13 0.27± 0.03

5. DISCUSSION

Although we have only used this method to compute intrinsics of a single camera in this paper, it is straight-
forward to extend to intrinsics of multiple cameras and their extrinsics. The homography Hi can easily incorpo-
rate the pose of the camera, and then all one needs is a separate set of parameters per camera.

Even though we have chosen to use the Brown-Conrady14,15 distortion model in our work, this is a choice
mostly motivated by being able to fairly compare with OpenCV.18 Our method is not tailored to this distortion
model, and one could replace it with another, such as the division model.19

We do not attempt to match the scaling of the image intensities in the rendering as in the work of Rehder et
al.12 We experimented with scaling the image intensities to match the rendering or including the local intensity
of the rendering as a parameter in the optimization as well, but we did not observe any increase in accuracy
when doing this.

Our method takes around three minutes to solve the optimization problem for 40 images from our real dataset,
where each image is 9 Megapixels. We find this to be an acceptable computation time, especially given that even
one such problem contains around 30 million residuals.

6. CONCLUSION

We have introduced a method for improving camera calibration based on minimizing the sum of squared dif-
ferences between real and rendered images of textured flat calibration objects. Our rendering pipeline consists
purely of analytically differentiable functions, which allows for exact gradients to be computed making the con-
vergence of the optimization more robust and fast, while still allowing us to blur the image in the image space
as would naturally occur. On synthetic data, our method outperforms state-of-the-art camera calibration based
on point detection, for images distorted by Gaussian blur and noise.

On real data, our method exhibits a clear advantage when only a few images are available for calibration,
and performs at least as well for a larger number of images, but we have not been able to verify whether our
method outperforms the existing methods in this case, due to the difficulty of evaluating which of two estimated
camera intrinsics is better.
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SUMMARY
This paper presents a novel solution for precision draping of prepreg composite fabrics onto double
curved molds. Our contributions relate to system design, including hardware and software compo-
nents, and to system integration. On the hardware side, design and implementation of a drape tool
with up to 120 suction cups positioned individually by linear actuators are described. On the soft-
ware side, design and implementation of the software architecture are presented, along with necessary
algorithms within sensor technologies and mathematical modeling. The essential system’s compo-
nents were verified individually, and the entire integrated system was successfully validated in the
Proof-of-Concept experiments, performed on an experimental physical model of the system.

KEYWORDS: Industrial robotics; Composite manufacturing; System development; Automated
draping process.

1. Introduction
Manual draping of woven composite fabrics onto one-of-a-kind molds is a time-consuming and
labor-intensive process. When using fabrics, which are pre-impregnated with epoxy resin (prepreg
material), the process also poses potential health risks to the operator. These factors hinder a more
extensive application of composites in areas such as aerospace, wind turbines, automotive and
shipbuilding. Hence, automation of the lay-up process could be highly beneficial. The FlexDraper
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2 Robotic system for draping prepreg composite fabrics

Fig. 1. Flexdraper, the developed experimental physical model of the system for draping the prepreg fabrics,
which is comprised of an industrial robot, a drape tool with 80 suction cups on linear actuators, a picking table
(on the left) and a mold table (on the right).

consortium was founded in 2013 to address this need and to develop a complete solution for auto-
mated draping of composite textiles. It consists of university and industrial partners with expertise in
robotic systems, automation, vision, composite manufacturing and material modeling.

In this paper, we present a novel solution for high precision draping of prepreg composite fabrics
onto one-of-a-kind double curved molds, using an automated robotic system, also refered to as a
FlexDraper. Our contributions relate to the system design, including hardware and software compo-
nents, and also to the system integration. The design of hardware components consists of mechanical
design of the drape tool and design of a vision-based sensor system and relies on the kinematic and
fabric modeling, verified in simulation. Special emphasis is put on design of software components
for automatic planning of draping sequence and automatic planning of suction cup’s trajectories for
a given draping strategy. A strategy is defined here as a path initiated from a configuration where all
suction cups are located above the mold (called the preshape) and end with all suction cups placed
on the mold and the ply has been correctly draped. The draping strategy applied in this paper is
inspired by manual draping in the wave-like pattern, where the drape starts by touching down at
a well-chosen location from which the drape propagates over the lay-up surface with a wave-like
movement. The aforementioned automatic planning requires an extensive modeling of fiber plies
and a dynamic modeling of drape tool, which are both discussed in this article.

The drape task consists of picking pre-cut plies of prepreg fabric from a flat table surface and
draping these onto the current stack of plies on a double curved mold. The pre-impregnated epoxy
causes a certain stickiness, which makes it challenging to grip this material, and to complete the task
without wrinkle formation. The developed FlexDraper system is shown in Fig. 1. The designed drape
tool consists of up to 12 × 10 suction cups with individual linear actuators arranged in a rectangular
grid, and it is moved by a six-axis industrial robot (Kuka KR360L2800). The integrated FlexDraper
system for automated draping of prepreg composite fibers was successfully tested in the Proof-of-
Concept experiments, performed on an experimental physical model of the system.

The paper is organized as follows: In the subsequent section, we discuss related approaches and
existing systems for draping composite materials. Afterward, we present an overview of the pro-
posed FlexDraper system. The succeeding section describes design and implementation of software
architecture, followed by detailed insights into different system’s components. Finally, the integrated
system is validated in the Proof-of-Concept experiments, leading to a conclusion with an outlook
toward future work.
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Robotic system for draping prepreg composite fabrics 3

2. State of the Art
For automating the manufacturing of large composite structures such as aircraft hulls, the two main
technologies are applied: Automated Fiber Placement and Automated Tape Laying.1 However, as
documented in ref. [1], such systems are very expensive to acquire. Furthermore, their expected
performance decreases significantly, when the parts become smaller. Therefore, the existing systems
are not economically viable for smaller sized parts and in low volume production.

As stated in refs. [2, 3], there have been earlier initiatives that attempted to find the automated
and competitive solutions for smaller parts. The majority of them focus on dry fabrics without resin.
Compared to the prepreg fabric, the processing and avoiding wrinkle formation is much easier with
such dry fabric because the dry fabric is not tacky and it is more flexible. Within our scope, previous
designs occur only in connection with R&D environments.

Some examples of state-of-the-art robot end effectors for draping carbon fiber fabrics are described
in refs. [2, 4–8], which are based mainly on tools with multiple actuated gripper grids, capable of
approximating the desired 3D shape. The articles refs. [2,4,5,8] focus on dry fiber material, whereas
the work presented in refs. [6, 7] is also discussing prepreg fabrics and has many similarities to ours.
However, it only considers the tool development and does not describe the necessary planning, mod-
eling and sensor systems described in this paper. An alternative to the aforementioned multigripper
grids is presented in refs. [9,10], which describes a cylindrical tool capable of draping dry fiber plies
through a rolling motion. The work shows promising results for single curved parts, but it is not
generalized to cope with double curved parts considered in FlexDraper.

One of the very few comparable automated pick and drape developments, which demonstrated
several prototype parts, was successfully demonstrated by Netherlands Aerospace Center and Umeco
in the COALESCE project and presented in refs. [11,12]. In COALESCE, a ply was picked up from a
flat surface by a robot with an inflatable membrane end effector and the protective film was removed
automatically. The material on the inflatable membrane was then slightly heated in order to improve
both flexibility and tackiness. Afterward, the prepreg was draped onto a highly curved and complex
mold. The system and process developed in COALESCE were found to be very cost-effective, but
showed several drawbacks as well. Some of the plies needed to be cut into smaller pieces, which made
it impossible to implement in the existing formal aerospace process qualification of the addressed
part. Another disadvantage was that the robot was programmed manually, which did not allow for
automatic adaptation to new parts.

To limit set-up and programming efforts, Bombardier and partners launched the Rapid Dry Carbon
Fiber Lay-up program,13 which uses Computer-aided design (CAD) data to aid the automated move-
ment coordination of their multi-gripper grid. This program goes one step further than COALESCE
in terms of using available CAD data for automated movement coordination. However, it also only
demonstrates the less challenging dry fiber material lay-up. Hence, even though there is a very
high pressure within the market itself to lower production costs and maintain or increase quality
for smaller prepreg parts, so far no complete solution has been demonstrated.

3. Design of the FlexDraper System
In this section, the designed FlexDraper system is presented, including an overview of its compo-
nents. The FlexDraper system is built according to the flow chart shown in Fig. 2.

First, the suction cups are aligned to a co-planar array in the horizontal direction and then a
sensorial measurement is performed to estimate the poses of suction cups. Knowing the positions of
each suction cup, the ply is picked up from a given position on a table and the foil is removed. Since
we have measured the positions of the suction cups relative to the robot, knowledge is available
about the positions of all the suction cups relative to the ply at the moment when it is picked. Based
on the 2D ply contour and the shape of the 3D mold, where the ply is to be placed, a method has
been implemented that maps points on the 2D ply to a desired corresponding 3D points on the mold
(see Section 6.1). Hence, knowing the pick locations of suction cups, the corresponding desired cup
placements on the mold can be computed.

The Plan draping sequence component generates a sequence of suction cups’ target poses. The
first target pose of the suction cups in the sequence is the preshape and gives the shape of the
ply immediately before the placement of the first suction cups onto the mold surface. The subse-
quent steps consist of selecting a first point of contact between the ply and the mold and from there
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4 Robotic system for draping prepreg composite fabrics

Fig. 2. Components in the FlexDraper system: the blue components represent the flow of actions, the green
components are vision-based sensors and red components are data and computational models. The components
encircled with the dashed, red line are explained in detail, in the referenced sections.

generating a wave-like pattern to perform the actual drape. In order to predict the draping outcome of
this sequence, the system relies on the mathematical models of fiber plies presented in Section 6.2.

With a known sequence of suction cups’ target poses, the Plan suction cup’ trajectories component
derives the trajectories of suction cups, using inverse kinematics and given the state of robot and
all linear actuators. The drape tool mechanism is underactuated and with a non-trivial interrelation
between the connected suction cups. Thus, a mathematical model (see Section 7) describing the
dynamics of the tool has been developed and is used for simulating the tool behavior while computing
the inverse kinematic solution, which minimizes the difference between the desired and actual suction
cups’ poses.

In order to account for inaccuracies in the mathematical models of the drape tool and the fiber
plies, a custom vision-based sensor system is employed (see Section 8) and consists of Tool state
sensor, Drape quality sensor and Pick camera. The Tool state sensor is employed to Estimate poses
of suction cups and to Estimate preshape. The sensor data are providing the control variable for the
actuators.

After the tool is preshaped and the preshape is estimated, the ply is moved to the mold and draped
according to the planed sequence. Finally, the draped part is going through the Quality inspection
system, which is relying on a Drape quality sensor and is intended for testing the draping quality
with respect to specifications concerning location accuracy, avoidance of wrinkles and air intrusions.

4. Hardware Design and Implementation of a Drape Tool and a Suction Cup
In order to be able to lay-up plies that follow the very different contours of the lay-up mold accurately,
it is necessary to have an end effector, which can be configured to the contours. For this purpose, we
have developed an adaptive, actively manipulated gripper grid. Concerning the design of the gripper
grid, several attributes and requirements had to be taken into account:

• The gripper must be able to handle plies of up to 1200 × 1000 mm in size with a height variation
of up to 150 mm.

• Necessary lifting force of the individual suction cups must be sufficient.
• Distances between suction cups must be limited to be able to manipulate the material.
• Ability to comply with a wide range of lay-ups on double curved surfaces with small to medium

curvature.
• The overall weight of the gripper must be within the payload limits of the robot.
• Electrical and mechanical complexity should be limited to improve robustness and reduce cost.
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Fig. 3. Drape tool and suction cup design and functionality. (a) Part of tool showing the relative placement of
the universal joints, actuators and suction cups. (b) Close-up of suction cups with ball joints for connecting with
the actuator and interlink structure. (c) Illustration of interlink structure when placed at different heights.

Throughout the experimentation, we found out that to enable the preshape with medium curvature
and details, the distances between suction cups need to be rather small. This conclusion also supports
the criterion for necessary lifting force and limited free-hanging material. On the current FlexDraper
tool, a grid spacing of approximately 110 mm between adjacent suction cups has been selected. The
chosen spacing distance imposes the requirement of up to 12 × 10 = 120 grippers to handle the
specified part dimensions. Considering the weight and complexity issue, the number of actuators
should be limited. We have therefore chosen to use only one linear actuator per suction cup for
up/down movements and employ passive joints and interlinks for allowing the cups to adjust the
horizontal position and comply the orientation to the mold. Figure 3a highlights a part of the tool
with three suction cups and interlinks.

We use SCHMALZ Composite Grippers (SCGs), which create suction by means of the Venturi
effect. The grippers are equipped with a custom-designed suction cup housing (see Fig. 3b) with
integral ball joints, which can turn up to ±40 degrees. A set of so-called interlinks between the
suction cups have been attached to force the position and orientation of suction cups and naturally
adjust to a surface of changing height (see Fig. 3c).

The suction cups are positioned by electric linear actuators with spindle drive (FESTO EPCO-16-
150-3P-ST-E). The actuators can be moved individually and can use position, velocity and force for
feedback control. The stroke length of the FESTO actuators (Z-direction) is 150 mm. The gripper
sub-assemblies of linear actuators and SCGs with custom suction cup housings are mounted equidis-
tantly on a base plate. To passively account for the changes in horizontal distance of the suction cups
from a 2D flat surface to a 3D-shaped contour, we mount the actuators on universal joints allowing
them to rotate and thereby satisfy the constraints of interlink structure. Even with this drape tool
design consisting of only one actuator per suction cup, the total weight of the whole assembly due to
the actuators, control boxes, power supplies, pneumatic components, wiring and tubing is adding up
to approximately 250 kg.

Finally, it should be mentioned that in order to be able to handle different ply shapes, suction
will only be applied to the relevant areas of the multi gripper grid. Not only because of air/energy
consumption but also due to the fact that the inactive grippers also cause loss of suction when they
are on the same local air supply circuit as active grippers. Additionally, the suction control prevents
the potential problem of laying down plies not covering the complete area of the previous ply, as
inactive grippers with suction may get close to the previous yet not fully attached ply.
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6 Robotic system for draping prepreg composite fabrics

Fig. 4. System architecture showing the application components (blue), ROS components implementing
functionality blocks and hardware abstractions (green) and hardware entities (grey).

5. Design and Implementation of Software Architecture for a FlexDraper System
This section describes the software architecture for the FlexDraper system. In order to bind its com-
ponents together, the system uses ROS14 as a middleware for enabling functionality to be distributed
across multiple processes and computers. At the same time, ROS also provides a natural decoupling
of components enabling project partners to work in parallel and update functionality as long as the
components comply to the agreed ROS service interfaces.

The main system architecture is shown in Fig. 4 with the different application components shown
to the left. These currently includes: (1) FlexDraper Drape Application, which implements the drape
planning and execution strategy and (2) Calibration Application used for calibrating the robot to the
sensors and to the mold.

The second column in Fig. 4 represents nodes responsible for a specific functionality, such as
communication with the robot and the tool. The ROS interfaces for these components are designed
to be hardware independent, which allows for future upgrades of hardware without changing the
application components.

The right column in Fig. 4 represents the hardware entities and not ROS nodes. A Kuka
KR360L280 robot is controlled through an RS232 serial interface. The communication follows a
client–server pattern with the robot being the client polling the server for tasks. The robot has the
capability of buffering up to N tasks enabling it to blend smoothly between motions. Besides point-
to-point and linear motions, the current interface also supports setting and reading I/O, reading the
robot configuration and wait statements.

The main communication with the tool is done through Transmission Control Protocol/Internet
Protocol (TCP/IP), where each of the controllers for the FESTO actuators has their own IP address.
Using the TCP/IP connection, the controllers are configured individually from the ROS node with
desired goals and velocity profiles. To ensure a synchronized start of the actuators, they are set up
to start based on a digital I/O signal. The valves used for controling suction of the tool are likewise
controlled through digital I/O. All mentioned I/O signals are connected to a Beckhoff PLC build into
the tool and controlled from the robot using ProfiBus. This solution provides a great flexibility, as the
Beckhoff PLC can easily be extended, and it does not require placement of additional wires along
the robot in case of a need for more I/O signals.
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Sensor systems and analysis are performed on a separate computer, which serves ROS nodes, so
that the measurement updates can be requested and the results can be returned to the FlexDraper
Drape Application.

6. Models of Fiber Plies
The first purpose of modeling the fiber plies is to calculate the optimal, final 3D location rmold(u, v),
for any point (u, v) on the ply. The second purpose of modeling the fiber plies is to create an engine
for planning draping strategies and for predicting the result of trial draping strategies. Since many
trial strategies may be required before obtaining the correctly draped ply, it is important to have fast
computable, but not necessarily highly accurate models for the initial planning. On the other hand,
at or near the final solution, the models must be accurate, potentially at the expense of a longer
computation time. Therefore, the studies are conducted on both less accurate, but fast approximate
models and highly accurate, but computationally expensive models.

6.1. Estimating the transformation rmold(u, v)
An initial estimation of the transformation of a point (u, v) on the flat ply on the picking table to
a corresponding point on the curved mold geometry rmold(u, v) is done by a surface mapping algo-
rithm. The algorithm is based on work by ref. [15] and extended with ply boundary constraints. It
serves to compute the position and orientation of the suction cups on the mold based on the contact
points between suction cup and ply during the pick up. The algorithm is based on a minimization of
the energy density in the fibers of the ply material. Therefore, the solution seeks to minimize fiber
deformations. Prior to initiating the minimization routine, a starting point is singled out and then a
fiber together with its orthogonal at that point are mapped to the mold. A discretization size is chosen,
and the energy minimization of the domain described by rmold(u, v) is executed.

6.2. Computationally fast models
Computationally fast models of the fiber ply deformations during draping are required for efficient
execution of the initially broad search space of the drape planning. The typical approach for fast
models of fabrics and other flexible materials is a damped mass spring model (see for example16).
However, for the prepreg material used in this project, the stiffness in the fiber direction leads to very
stiff springs and hence requires a very small time step, leading to slow computations. Rather than
using the mass spring model, a static geometric model has been developed. This model takes advan-
tage of the very high arc length stiffness in the fiber directions and computes only the equilibrium
solution and not the internal modes, which are due to, for example, accelerations of the drape tool.

The following assumptions have been made in our model.

• Gravity can be neglected compared to material forces.
• Vibrational modes can be neglected, so only the equilibrium solution is needed.
• The material is first-order continuous at all points.
• The arc length in fiber directions between adjacent suction cups is preserved.
• There is no sliding of material relative to the suction cups.

With these assumptions, the ply can be modeled by a fiber length preserving polynomial interpola-
tion. A combination of third- and fourth-order polynomials has been used.

r∗(s) = a∗
3s3 + a∗

2s2 + a∗
1s + a∗

0 (1)

The a∗ parameters can be found using boundary conditions. By adding a length constraint a fourth-
order polynomial can be described as:

r(s) = r∗(s) + a∗
4ds2(L − s)2. (2)

L denotes the length of a fiber between two constrained points and d is defined as:

d = r(L
2 ) − 1

2

(
r(0) + r(L)

)
. (3)
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8 Robotic system for draping prepreg composite fabrics

In order to compute a∗
4, it is assumed that L is known and that the arc length in parametric form is

given by:

L ≡
∫ L

0

√
r′ · r′ds. (4)

Using Eqs. (1)–(4) for selected fibers connecting suction cups in both directions expands a grid.
The enclosed areas can then be interpolated by a location-dependent weighed average, resulting in a
function of the form. r(u, v) = {x(u, v); y(u, v); z(u, v)}, where u, v describe the 2D location on the
ply and r(u, v) describes the corresponding 3D location as a function of the position and orientation
of the four nearest suction cups. For a more detailed derivation refer to ref. [17]. The advantage of
this model is that it fits the experimental data well and that it is computational cheap. For an 10 × 8
gripper grid and with non-optimized MATLAB code, the model is using approximately 0.6 s on a
conventional PC. The fact of working with an equilibrium solution makes the found parameters path
invariant. It reduces the search space drastically, as it allows for the draping strategies to be tested by
simulating subparts of the strategy separately. This contributes to further reduction of computational
time.

6.3. Advanced FEM type models
In order to simulate the outcome of a finalized draping sequence and to confirm that the planned
suction cups’ trajectories that were learned and programmed using the computationally fast model
are acceptable, a highly accurate model is developed. The accurate model considers the peculiar
mechanical responses of the prepreg. Due to the arrangement of the fibers in the ply, the fibers
can rotate in the weave, i.e. shear, such that the initial 90◦ fiber angles change. As a consequence,
the material is highly anisotropic, i.e. the stiffness in the fiber direction is higher than in diagonal
directions by several orders of magnitude. In addition, the stiffness is non-linear in the deformation
(strain) as well as dependent on the rate of deformation due to the presence of the uncured resin
(viscoelasticity). At large straining, permanent deformations, such as plasticity can come into effect.
The tackiness of the ply affects the frictional properties in the interfaces between the ply and the
suction cups as well as in the interface between the ply and the mold. This in turn affects whether
the ply slides or deforms when being manipulated with the suction cups. These transient aspects of
the draping must therefore also be considered in a highly accurate model.

A closed form solution that can represent the mechanical response for arbitrary ply geometries is
not available, and thus the Finite Element (FE) method is deployed. Numerous accounts of successful
application of FE simulations of woven reinforcement drapings are found in the literature.18 Here,
a so-called continuous model is applied, where homogenization theory and shell elements are used
for modeling the otherwise non-homogeneous nature of the plies. Our material model is based on
the measured material response from standardized tests. The in-plane ply response can be measured
using a universal testing machine, where the force required to elongate a ply sample is recorded. For
the fiber direction response, the fibers must be aligned with the direction of loading. To measure the
shear, i.e. change in fiber angles, the sample must be oriented 45◦ to the loading direction as seen
in Fig. 5a. This 45◦-test is known as the bias-extension test.19 By means of kinematics, the sample
elongation can be converted to the change in shear angle and the recorded load can be converted
to the shear load in the ply. The results from a bias-extension test on the prepreg material for three
different displacement rates are presented in Fig. 5b.

Relevant output of the FE model includes: undesired formation of wrinkles, resulting local fiber
angles, amount of shear and reaction forces at the interfaces that can be used for identifying sliding
effects. Although the FE model requires a substantial number of inputs and the solution time can be in
the order of hours, it is a powerful tool for offline studies and for verification of draping strategies. An
example of the results from the FE model is shown in Fig. 6. Details on the material characterization,
together with the FE modeling and the results can be found in ref. [20].

7. Model of Drape Tool
Initially, there conducted a study on the resulting degrees of freedom related to an underactuated tool.
Consider here an M × N array of suction cups and hence M × N actuators. As each suction cup has
6 degrees of freedom, there would be 6MN degrees of freedom if no constraints were present. With
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Fig. 5. The bias-extension test. (a) Test set-up with 120 × 270 mm sample. (b) Averaged shear force vs shear
angle results. Three samples were tested for each rate.

Fig. 6. A FE model of a 5 × 5 grid of suction cups in a free-hanging configuration. The colors indicate amount
of shear.

the actuators at fixed configurations, there are MN actuator constraints and M(N − 1) + N(M − 1)

interlink constraints. This results with an underactuated system with 3MN + M + N internal degrees
of freedom when the actuators are locked.

The underactuated drape tool has all the advantages previously listed, but the disadvantage is that
the underactuation increases the difficulty of drape tool modeling. However, our experiments have
indicated that at least there is a high degree of repeatability of the configurations when the plies are
attached because the forces between the suction cups and the material determine the configuration.

This indicates that it is possible to model these forces correctly and thus predict the suction cup
positions. To exploit that, a model is developed, which takes these forces as input and computes
the resulting suction cup configuration. Additionally, a so-called Tool state sensor, described in the
Section 8, is measuring the actual location of the suction cups, which are first used for performing an
iterative fine tuning of the model and afterward for validating the accuracy of the final model.

Each of the MN suction cup assemblies, shown in Fig. 3, is modeled as three rigid bodies. These
bodies are: the actuator housing, the actuator rod and the suction cup. The inertia is defined relative
to the rigid bodies and the velocities as spatial twists.21 The generalized coordinates, qi, for assembly
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10 Robotic system for draping prepreg composite fabrics

i are: qi =
[
θy,i, θx,i, ηi, φz,i, φy,i, φx,i

]T
. The θ’s are denoting the angles of the universal joint at the

mounting point, first rotating about the y-axis and then the resulting x axis. η is the extension of the
actuator, and the φ’s are the z-y-x Euler angles of the suction cup. The total state vector q is made by
stacking all the qi vectors. The total kinetic energy of the whole tool using generalized coordinates is
then:

T = 1

2

MN∑
i=1

3∑
j=1

[
mj‖ṗj(qi)‖2 + ωT

j (qi) · Ij · ωj(qi)
] = 1

2
q̇T · M(q) · q̇, (5)

where mj is the mass of the jth body, ṗj(qi) is the time derivative of the center of mass of the body,
ωj(qi) is the angular velocity and Ij is the inertia matrix. The matrix M(q) is the generalized inertia
matrix.

The interlink constraints are modeled as point-to-point constraints between assemblies. The rota-
tion point of the interlink on each suction cup is defined as rα and sα for each interlink α. Then, the
interlink constraint is expressed as:

fα(q) = 1

2

(‖rα(q) − sα(q)‖2 − d2
) = 0, α = 1, ..., M(N − 1) + N(M − 1), (6)

where d denotes the length of the interlink.
The movement profiles of the actuators are known and are modeled as time-dependent constraints

on the η coordinates:

gβ(t, η) = ηβ − cβ(t) = 0, β = 1, ..., MN, (7)

where cβ is the movement of the β’th actuator.
The potential energy is denoted by V(q), and the damping forces in the tool, denoted by F(q̇), is

derived by defining a Rayleigh dissipation function.22

Using constrained Lagrangian mechanics,23 the equations of motion become:

d

dt
∂q̇T(q, q̇) − ∂qT(q, q̇) + ∂qV(q) + ∂q̇F(q̇) =

∑
α

λα∂qfα(q) +
∑

β

μβ∂qgβ(t, q) (8)

∂qfα(q) · q̈ + q̇T · ∂qqfα(q) · q̇ = 0 (9)

η̈β − c̈β(t) = 0 (10)

In Eq. (8), the variables λ and μ are Lagrange multipliers for the interlink constraints and the
actuator constraints, respectively. The operator ∂ denotes the partial derivative with respect to the
variable in the subscript. Equations (9) and (10) are acceleration constraints due to the interlinks and
actuator movement. The acceleration constraints introduce drift in the position constraints during
integration, which is mitigated using mass orthogonal projection24 at every timestep.

8. Sensor System
Automated optical (vision) measurements are needed for performing several sub-tasks in FlexDraper.
More specifically, the sensor system shown in Fig. 7 was designed. It consists of:

• Pick camera. This is an industrial camera mounted above the pick table. The contour of a ply is
found using image processing algorithms.

• Tool state sensor. This is a structured light vision system positioned between pick and drape tables.
Details of the sensor are given below.

• Drape quality sensor. This is an additional higher resolution structured light vision system. This
sensor will be mounted above the drape table to measure the ply surface after a drape. The allow-
able tolerance for ply placement is +/− 2.5 mm on the outer contour and +/− 3 degree for the
fiber angle at a specified point. Hence, the measurement accuracy must be below these toler-
ances. The drape quality sensor has not been installed yet as the draping quality is still manually
inspected.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574720000193
Downloaded from https://www.cambridge.org/core. DTU Library - Technical University of Denmark, on 10 Jul 2020 at 12:47:23, subject to the Cambridge Core terms of use, available at



Robotic system for draping prepreg composite fabrics 11

Fig. 7. Placement of sensors in the FlexDraper cell.

Fig. 8. Point cloud of one of the suction cups as captured by the tool state sensor.

The aforementioned tool state sensor serves two processes highlighted in Fig. 2:

• Estimate poses of suction cups
• Estimate preshape

The estimation of poses of suction cups is based on the measurements taken prior to picking the
ply and it is necessary because due to the underactuation, the actual pose of each suction cup is
unknown and impossible to model when no ply is attached. The estimated poses of suction cups are
then used for predicting the locations, where the individual suction cups should pick up the ply.

For estimating the poses of suction cups, the 3D input data from the tool state sensor are acquired
by scanning the suction cup array from below. The poses of the suction cups are recovered from the
data by means of 3D pose estimation.

First, the 3D data are segmented into disjoint cells, corresponding to the individual suction cups,
by means of a regular quadrilateral grid in camera space. Since the segmented regions remain con-
stant, they are predefined in a manual operation. The pose of each suction cup is then recovered by
robust alignment of the 3D CAD drawing of the suction cups.

Suction cups are found in the 3D data by fitting planes with the Random Sampling Consensus
heuristic. The resulting locations and orientations are used for initializing point-to-plane-based
Iterative closest point registration of the CAD suction cup to the data. Figure 8 shows alignment
of a single suction cup, and Fig. 9 shows the resulting estimates of positions and orientations of the
cups.
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Fig. 9. Computed pose estimates of the suction cups.

Fig. 10. Point cloud of a scanned fiber ply.

Estimate preshape is referring to the estimation of states of drape tool and ply after a ply is picked
up. It is done based on the 3D scan of the ply, while it is held with the drape tool, combined with the
states of drape tool and ply, which are predicted by the presented mathematical models.

The 3D data of the ply used in FlexDraper are acquired both from the tool state sensor and later
on the drape quality sensor. Both sensors are structured light systems based on active stereo fringe
projection,25 which is able to achieve very high accuracy and precision while keeping scan times
in the order of a few seconds.26 The spatial encoding uses two frequency phase shifting with phase
unwrapping based on the heterodyne principle.27 This encoding method is particularly flexible and
allows for the detection and elimination of falsely encoded surface points, which will inevitably occur
due to the complex optical properties of carbon fiber composites.28 Our experimentation shows that
with careful consideration of these effects, excellent results of the 3D ply shapes can be achieved. Our
solution is implemented with the tool state sensor, and Fig. 10 shows an example of a scanned ply.

The tool state sensor is comprised of two Gigabit Ethernet cameras (FLIR BFLY-PGE-23S6M-
C) and a LightCrafter 4500 programmable pattern projector configured through USB. The projector
emits blue light (465 nm). Hardware triggers the cameras for synchronized display and captures
the structured light pattern sequence. In order to reduce ambient lighting effects, the cameras are
equipped with narrow band-pass filters matching the illumination wavelength.

9. Proof-of-Concept Experimental Results
Most of the experiments performed until now on the experimental physical model of the system have
had the aim to test and verify the electrical and mechanical robustness of the proposed solution to the
integrated system. Initially, the pick and drape tests were taught manually and performed for making
qualitative checks of system’s repeatability, indicating that it can be modeled deterministically. The
tests showed a position variation of the ply post drape of only a few millimeters, which is a promising
result, since the tool state sensor is not yet used for correcting the positions. Moreover, the purpose
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Fig. 11. Experimental set-up: two different orientations of prepreg material and a double curved mold. The
dimensions of the mold are in mm and the height is color coded as shown on the scale bar.

of these manually taught tests has been to study if the system would be able to produce the required
draping quality.

The conventional lay-up table of the part consists of a multilayer prepreg material with both full
plies, covering the complete part surface, and partial plies, acting as local reinforcement layers in the
assembly areas. The plies used in the Proof-of-Concept experiments are full pies, as shown in Fig. 11.
They were draped on the mold with one layer of prepreg material, placed manually on the mold prior
to the experiments and with no draping quality issues. A typical edge panel of 1200 × 350 mm with
relatively low curvature has been selected. The chosen part has the shape and complexity represent-
ing a large product family of similar aerospace parts. The advantage of using this part over a more
complex or larger and more material intensive part is also the possibility for quickly testing the dif-
ferent aspects of automation during the development of the automated process. The prepreg material
used in the experiments had the 4 harness-satin weave fiber pattern. Two different orientations of
the prepreg material with respect to the mold were tested: P0 − 90 and P45 − 45. The orientation
P0 − 90 has the fibers aligned to the edges of the mold and the orientation P45 − 45 has the fibers
rotated 45◦ with respect to the edges of the mold.

In the performed experiments with automated programming, the gripper grid preshaped the ply,
in order to approximate the shape of the mold, and positioned the robot 20 mm above the drape
location. Starting in one corner, the linear actuators of the tool created a wave-like motion, draping
the ply onto the mold. Two types of wave strategies were tested: square wave strategy and skewed
wave strategy, both shown in Fig. 12. The square wave strategy is staring from any single cup and
moves outward in a ring-like wave. The skewed wave strategy is staring in a corner and moves on
a straight line with the constant angle. Both strategies were applied to two different ply orientations
P0 − 90 and P45 − 45, shown in Fig. 11.

The experimental results showed that the square wave strategy applied to P0 − 90 gives little to no
wrinkling of the material. Whereas applying the same strategy to P45 − 45 resulted in significantly
more wrinkling, which was caused by forces stretching the material in the diagonal direction of the
fibers. Changing the draping strategy to the skewed wave reduced wrinkling of P45 − 45 samples.
For validation purpose, the skewed strategy was also applied to P0 − 90, and as expected, it increased
wrinkling in the drape quality.

A Proof-of-Concept experiment is demonstrated on the experimental physical model of the sys-
tem, shown in Fig. 13. The results of an automated draping process can be seen in Fig. 14. Figure 14a
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Fig. 12. Drape strategies used in the experiments, where color coding indicates position of the suction cup.
Yellow is the preshape position, light green is the middle position and dark green is contact with the mold. The
purple line illustrates the boundary of the ply.

Fig. 13. (taken from Supplementary Video 1. Please refer to the supplementary material for the full video):
Proof-of-Concept experiment showing automated draping process, performed on the experimental physical
model of the system.

Fig. 14. Results of draping a 1200 × 350 mm ply onto a double curved low curvature surface. (a) After the
automatic drape the outline of the ply is offset approximately 5 mm. (b) Draping result with only minor air
intrusions, which are fixed during vacuum debulk.shows the alignment of the ply. Its offset is approximately 5 mm. Figure 14b shows the case exam-
ple of the overall draping result. It contains minor air intrusions, which can be handled by the
sub-sequential vacuum debulking process.
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10. Conclusion and Future Work
The main contribution of this paper is the novel design and implementation of a new system for auto-
matic robotic draping of prepreg fiber fabrics onto double curved molds. The various hardware and
software components have been described in detail, and the integration issue of these components to
the complete solution has been discussed. Finally, Proof-of-Concept experiments are conducted on
the experimental physical model of the system, and the results are presented.

The system has been tested on an actual, double curved part from an aircraft. The prepreg material
used in the experiments had the 4 harness-satin weave pattern, and it was draped onto the mold using
two different orientations: P0 − 90 and P45 − 45. For both orientations, two draping strategies were
applied: square weave strategy and skewed wave strategy. The final drape was then inspected for
quality, represented by the number of wrinkles and air intrusions. Based on the Proof-Of-Concept
experimental results, it can be concluded that the draping strategies have to be adapted to the specific
drapes, as the shape of the part and the orientation of fibers in the ply with regard to the mold have
an impact on the resulting draping quality. This underlines also the importance of having realistic ply
and tool models available for offline planning of suited drape strategies.

Various technologies still need to be developed before the system is ready for production. The
current drape tool is a part of the experimental physical model of the system with many 3D printed
parts that will be replaced. Moreover, it is desired to simplify the layout of the drape tool, further
reduce the weight and study other kinematic structures. In addition, an open/close mechanism for the
suction will be installed for each suction cup. Furthermore, the development of the tool state sensor
will be finalized, and the two additional sensors, which are the Pick Camera and the drape quality
sensor, will be installed and tested.

The models will be improved based on the inputs from the experimental tests with the tool state
sensor and by direct tests of the material properties. Furthermore, the current version of applying the
wave-like draping strategy is very premature and will be substantially improved and integrated with
a learning strategy based on the feedback from the drape quality sensor.

Even though the system is still at an early stage of development, the initial trials have been posi-
tive. We therefore convinced that the FlexDraper system as presented constitutes a feasible approach
toward fully automated draping of prepreg composite fabrics.
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Abstract. The objective in video frame interpolation is to predict ad-
ditional in-between frames in a video while retaining natural motion and
good visual quality. In this work, we use a convolutional neural network
(CNN) that takes two frames as input and predicts two optical flows with
pixelwise weights. The flows are from an unknown in-between frame to
the input frames. The input frames are warped with the predicted flows,
multiplied by the predicted weights, and added to form the in-between
frame. We also propose a new strategy to improve the performance of
video frame interpolation models: we reconstruct the original frames us-
ing the learned model by reusing the predicted frames as input for the
model. This is used during inference to fine-tune the model so that it
predicts the best possible frames. Our model outperforms the publicly
available state-of-the-art methods on multiple datasets.

Keywords: slow motion · video frame interpolation · convolutional neu-
ral networks.

1 Introduction

Video frame interpolation, also known as inbetweening, is the process of gener-
ating intermediate frames between two consecutive frames in a video sequence. 
This is an important technique in computer animation [19], where artists draw 
keyframes and lets software interpolate between them. With the advent of high 
frame rate displays that need to display videos recorded at lower frame rates, 
inbetweening has become important in order to perform frame rate up-conver-
sion [2]. Computer animation research [9, 19] indicates that good inbetweening 
cannot be obtained based on linear motion, as objects often deform and follow 
nonlinear paths between frames. In an early paper, Catmull [3] interestingly ar-
gues that inbetweening is “akin to difficult artificial intelligence problems” in 
that it must be able understand the content of the images in order to accu-
rately handle e.g. occlusions. Applying learning-based methods to the problem 
of inbetweening thus seems an interesting line of investigation.

Some of the first work on video frame interpolation using CNNs was pre-
sented by Niklaus et al. [17, 18]. Their approach relies on estimating kernels to 
jointly represent motion and interpolate intermediate frames. Concurrently, Liu

This is the authors' version of the work. The final authenticated version is available 
online at https://doi.org/10.1007/978-3-030-20205-7_26
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Fig. 1. Diagram illustrating the cyclic fine-tuning process when predicting frame Î1.5.
The model is first applied in a pairwise manner on the four input frames I0, I1, I2, and
I3, then on the results Î0.5,Î1.5, and Î2.5. The results of the second iteration, Ĩ1 and Ĩ2,
are then compared with the input frames and the weights of the network are updated.
This process optimizes our model specifically to be good at interpolating frame Î1.5.

et al. [11] and Jiang et al. [6] used neural networks to predict optical flow and
used it to warp the input images followed by a linear blending.

Our contribution is twofold. Firstly, we propose a CNN architecture that
directly estimates asymmetric optical flows and weights from an unknown in-
termediate frame to two input frames. We use this to interpolate the frame
in-between. Existing techniques either assume that this flow is symmetric or use
a symmetric approximation followed by a refinement step [6, 11, 16]. For non-
linear motion, this assumption does not hold, and we document the effect of
relaxing it. Secondly, we propose a new strategy for fine-tuning a network for
each specific frame in a video. We rely on the fact that interpolated frames can
be used to estimate the original frames by applying the method again with the
in-between frames as input. The similarity of reconstructed and original frames
can be considered a proxy for the quality of the interpolated frames. For each
frame we predict, the model is fine-tuned in this manner using the surrounding
frames in the video, see Figure 1. This concept is not restricted to our method
and could be applied to other methods as well.

2 Related work

Video frame interpolation is usually done in two steps: motion estimation fol-
lowed by frame synthesis. Motion estimation is often performed using optical
flow [1, 4, 25], and optical flow algorithms have used interpolation error as an
error metric [1, 12, 23]. Frame synthesis can then be done via e.g. bilinear inter-
polation and occlusion reasoning using simple hole filling. Other methods use
phase decompositions of the input frames to predict the phase decomposition of
the intermediate frame and invert this for frame generation [14,15], or they use
local per pixel convolution kernels on the input frames to both represent motion
and synthesize new frames [17, 18]. Mahajan et al. [13] determine where each
pixel in an intermediate frame comes from in the surrounding input frames by
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solving an expensive optimization problem. Our method is similar but replaces
the optimization step with a learned neural network.

The advent of CNNs has prompted several new learning based approaches.
Liu et al. [11] train a CNN to predict a symmetrical optical flow from the inter-
mediate frame to the surrounding frames. They synthesize the target frame by
interpolating the values in the input frames. Niklaus et al. [17] train a network
to output local 38x38 convolution kernels for each pixel to be applied on the
input images. In [18], they are able to improve this to 51x51 kernels. However,
their representation is still limited to motions within this range. Jiang et al. [6]
first predict bidirectional optical flows between two input frames. They combine
these to get a symmetric approximation of the flows from an intermediate frame
to the input frames, which is then refined in a separate step. Our method, in
contrast, directly predicts the final flows to the input frames without the need
for an intermediate step. Niklaus et al. [16] also initially predict bidirectional
flows between the input frames and extract context maps for the images. They
warp the input images and context maps to the intermediate time step using the
predicted flows. Another network blends these to get the intermediate frame.

Liu et al. [10] propose a new loss term, which they call cycle consistency loss.
This is a loss based on how well the output frames of a model can reconstruct the
input frames. They retrain the model from [11] with this and show state-of-the-
art results. We use this loss term and show how it can be used during inference
to improve results. Meyer et al. [14] estimate the phase of an intermediate frame
from the phases of two input frames represented by steerable pyramid filters.
They invert the decomposition to reconstruct the image. This method alleviates
some of the limitations of optical flow, which are also limitations of our method:
sudden light changes, transparency and motion blur, for example. However, their
results have a lower level of detail.

3 Method

Given a video containing the image sequence I0, I1, · · · , In, we are interested
in computing additional images that can be inserted in the original sequence
to increase the frame rate, while keeping good visual quality in the video. Our
method doubles the frame rate, which allows for the retrieval of approximately
any in-between frame by recursive application of the method. This means that
we need to compute estimates of I0.5, I1.5, · · · , In−0.5, such that the final sequence
would be:

I0, I0.5, I1, · · · , In−0.5, In.

We simplify the problem by only looking at interpolating a single frame I1,
that is located temporally between two neighboring frames I0 and I2. If we know
the optical flows from the missing frame to each of these and denote them as
F1→0 and F1→2, we can compute an estimate of the missing frame by

Î1 = W0W(F1→0, I0) + W2W(F1→2, I2), (1)



4 M. Hannemose, J.N. Jensen et al.

g

I0

I2

F1→0

F1→2

W0

W2

Î1

Fig. 2. Illustration of the frame interpolation process with g from Equation (2). From
left to right: Input frames, predicted flows, weights and final interpolated frame.
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Fig. 3. The architecture of our network. Input is two color images I0 and I2 and output
is optical flows F1→0,F1→2, and weights W0,W2. Convolutions are 3× 3 and average
pooling is 2 × 2 with a stride of 2. Skip connections are implemented by adding the
output of the layer that arrows emerge from to the output of the layers they point to.

where W(·, ·) is the backward warping function that follows the vector to the
input frame and samples a value with bilinear interpolation. W0 and W2 are
weights for each pixel describing how much of each of the neighboring frames
should contribute to the middle frame. The weights are used for handling occlu-
sions. Examples of flows and weights can be seen in Figure 2. We train a CNN g
with a U-Net [20] style architecture, illustrated in Figure 3. The network takes
two images as input and predicts the flows and pixel-wise weights

g(I0, I2)→ F1→0,F1→2,W0,W2. (2)

Our architecture uses five 2 × 2 average pooling layers with stride 2 for the
encoding and five bilinear upsampling layers to upscale the layers with a factor
2 in the decoding. We use four skip connections (addition) between layers in the
encoder and decoder. It should be noted that our network is fully convolutional,
which implies that it works on images of any size, where both dimensions are a
multiple of 32. If this is not the case, we pad the image with boundary reflections.

Our model for frame interpolation is obtained by combining Equations (1)
and (2) into

f(I0, I2) = Î1, (3)

where Î1 is the estimated image. The model is depicted in Figure 2. All compo-
nents of f are differentiable, which means that our model is end-to-end trainable.
It is easy to get data in the form of triplets (I0, I1, I2) by taking frames from
videos that we use as training data for our model.
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3.1 Loss-functions

We employ a number of loss functions to train our network. All of our loss
functions are given for a single triplet (I0, I1, I2), and the loss for a minibatch of
triplets is simply the mean of the loss for each triplet. In the following paragraphs,
we define the different loss functions that we employ.

Reconstruction loss models how well the network has reconstructed the miss-
ing frame:

L1 =
∣∣∣
∣∣∣I1 − Î

∣∣∣
∣∣∣
1
. (4)

Bidirectional reconstruction loss models how well each of our predicted op-
tical flows is able to reconstruct the missing frame on its own:

Lb = ||I1 −W(F1→0, I0)||1 + ||I1 −W(F1→2, I2)||1 . (5)

This has similarities to the work of Jiang et al. [6] but differs since the flow is
estimated from the missing frame to the existing frames, and not between the
existing frames.

Feature loss is introduced as an approximation of the perceptual similarity by
comparing feature representation of the images from a pre-trained deep neural
network [7]. Let φ be the output of relu4 4 from VGG19 [21], then

Lf =
∣∣∣
∣∣∣φ(I1)− φ(Î1)

∣∣∣
∣∣∣
2

2
. (6)

Smoothness loss is a penalty on the absolute difference between neighboring
pixels in the flow field. This encourages a smoother optical flow [6,11]:

Ls = ||∇F1→0||1 + ||∇F1→2||1 , (7)

where ||∇F||1 is the sum of the anisotropic total variation for each (x, y) compo-
nent in the optical flow F. For ease of notation, we introduce a linear combination
of Equations (4) to (7):

Lr (I0, I1, I2) = λ1L1 + λbLb + λfLf + λsLs. (8)

Note that we explicitly express this as a function of a triplet. When this triplet
is the three input images, we define

Lα = Lr (I0, I1, I2) . (9)

Similarly, for ease of notation, let the bidirectional loss from Equation (5) be
a function

LB(I0, I1, I2,F1→0,F1→2) = Lb (10)

where, in this case, F1→0 and F1→2 are the flows predicted by the network.
Pyramid loss is a sum of bidirectional losses for downscaled versions of images

and flow maps:

Lp =

l=4∑

l=1

4lLB
(
Al(I0), Al(I1), Al(I2), Al(F1→0), Al(F1→2)

)
, (11)

where Al is the 2l × 2l average pooling operator with stride 2l.
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Cyclic loss functions. We can apply our model recursively to get another
estimate of I1, namely

Ĩ1 = f
(
Î0.5, Î1.5

)
= f

(
f (I0, I1) , f (I1, I2)

)
. (12)

Cyclic loss is introduced to ensure that outputs from the model work well as
inputs to the model [10]. It is defined by

Lc = Lr
(
Î0.5, I1, Î1.5

)
. (13)

Motion loss is introduced in order to get extra supervision on the optical
flow and utilizes the recursive nature of our network.

Lm = ||F1→0 − 2F1→0.5||22 + ||F1→2 − 2F1→1.5||22 (14)

This is introduced as self-supervision of the optical flow, under the assumption
that the flow F1→0 is approximately twice that of F1→0.5 and similarly for F1→2

and F1→1.5, and assuming that the flow is easier to learn for shorter time steps.

3.2 Training

We train our network using the assembled loss function

L = Lα + Lc + λmLm, (15)

where Lα, Lc and Lm are as defined in Equations (9), (13) and (14) with λr =
1, λb = 1, λf = 8/3, λs = 10/3 and λm = 1/192. The values have been selected
based on the performance on a validation set.

We train our network using the Adam optimizer [8] with default values β1 =
0.9 and β2 = 0.999 and with a minibatch size of 64.

Inspired by Liu et al. [10], we first train the network using only Lα. This is
done on patches of size 128 × 128 for 150 epochs with a learning rate of 10−5,
followed by 50 epochs with a learning rate of 10−6. We then train with the full
loss function L on patches of size 256 × 256 for 35 epochs with a learning rate
of 10−5 followed by 30 epochs with a learning rate of 10−6. We did not use
batch-normalization, as it decreased performance on our validation set. Due to
the presence of the cyclic loss functions, four forward and backward passes are
needed for each minibatch during the training with the full loss function.

Training data. We train our network on triplets of patches extracted from
consecutive video frames. For our training data, we downloaded 1500 videos in
4k from youtube.com/4k and resized them to 1920×1080. For every four frames
in the video not containing a scene cut, we chose a random 320× 320 patch and
cropped it from the first three frames. If any of these patches were too similar
or if the mean absolute differences from the middle patch to the previous and
following patches were too big, or too dissimilar, they were discarded to avoid
patches that either had little motion or did not include the same object. Our
final training set consists of 476,160 triplets.
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Data augmentation. The data is augmented while we train the network by
cropping a random patch from the 320 × 320 data with size as specified in the
training details in Section 3.2. In this way, we use the training data more ef-
fectively. We also add a random translation to the flow between the patches,
by offsetting the crop to the first and third patch while not moving the center
patch [18]. This offset is ±5 pixels in each direction. Furthermore, we also per-
formed random horizontal flips and swapped the temporal order of the triplet.

3.3 Cyclic fine-tuning (CFT)

We introduce the concept of fine-tuning the model during inference for each
frame that we want to interpolate and refer to this as cyclic fine-tuning (CFT).
Recall that the cyclic loss Lc measures how well the predicted frames are able
to reconstruct the original frames. This gives an indication of the quality of the
interpolated frames. The idea of CFT is to exploit this property at inference
time to improve interpolation quality. We do this by extending the cyclic loss
to ±2 frames around the desired frame and fine-tuning the network using these
images only.

When interpolating frame I1.5, we would use surrounding frames I0, I1, I2,
and I3 to compute Î0.5, Î1.5, and Î2.5, which are then used to compute Ĩ1 and Ĩ2 as
illustrated in Figure 1 on page 2. Note that the desired interpolated frame Î1.5 is
used in the computation of both of the original frames. Therefore by fine-tuning
of the network to improve the quality of the reconstructed original frames, we
are improving the quality of the desired intermediate frame indirectly.

Specifically, we minimize the loss for each of the two triplets (Î0.5, I1, Î1.5)

and (Î1.5, I2, Î2.5) with the loss for each triplet given by

LCFT = Lc + λpLp, (16)

where λp = 10, and Lp is the pyramid loss described in Section 3.1. In order
for the model to be presented with slightly different samples, we only do this
fine-tuning on patches of 256× 256 with flow augmentation as described in the
previous section. For computational efficiency, we only do this for 50 patch-
triplets for each interpolated frame.

More than ±2 frames can be applied for fine-tuning, however, we found that
this did not increase performance. This fine-tuning process is not limited to our
model and can be applied to any frame interpolation model taking two images
as input and outputting one image.

4 Experiments

We evaluate variations of our method on three diverse datasets: UCF101 [22],
SlowFlow [5] and See You Again [18]. These have previously been used for frame
interpolation [6, 11, 18]. UCF101 contains different image sequences of a variety
of actions, and we evaluate our method on the same frames as Liu et al. [11], but
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Overlaid input frames Ground truth SepConv L1 [18] CyclicGen [10] Ours

Fig. 4. Qualitative examples on the SlowFlow dataset. Images shown are representative
crops taken from the full images. Note that our method performs much better for large
motions. The motion of the dirt bike is approximately 53 pixels, and the bike tire has
a motion of 34 pixels.

Table 1. Overview of the datasets we used for evaluation.

Number of
sequences

Number of frames
Avg. sequence

lengthDataset Resolution Interpolated Total

SlowFlow [5] 34 1280× {1024, 720} 17,871 20,458 602
See You Again 117 1920× 1080 2,503 5,355 46
UCF101 [22] 379 256× 256 379 1,137 3

did not use any motion masks as we are interested in performing equally well
over the entire frame. SlowFlow is a high-fps dataset that we include to showcase
our performance when predicting multiple in-between frames. For this dataset,
we have only used every eighth frame as input and predicted the remaining
seven in-between in a recursive manner. All frames in the dataset have been
debayered, resized to 1280 pixels on the long edge and gamma corrected with a
gamma value of 2.2. See You Again is a high-resolution music video, where we
predict the even-numbered frames using the odd-numbered frames. Furthermore,
we have divided it into sequences by removing scene changes. A summary of the
datasets is shown in Table 1.

We have compared our method with multiple state-of-the-art methods [6,10,
11,18] which either have publicly available code and/or published their predicted
frames. For the comparison with SepConv [18], we use the L1 version of their
network for which they report their best quantitative results. For each evaluation,
we report the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity
Index (SSIM) [24].
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Table 2. Interpolation results on SlowFlow, See You Again and UCF101. PSNR, SSIM:
higher is better. Our baseline is our model trained only with L1 + Lb + Ls and con-
strained to symmetric flow. Elements are added to the model cumulatively. Larger
patches means training on 256 × 256 patches. Bold numbers signify that a method
performs significantly better than the rest on that task with p < 0.02.

SlowFlow See You Again UCF101

Method PSNR SSIM PSNR SSIM PSNR SSIM

DVF [11] - - - - 34.12 0.941
SuperSloMo [6] - - - - 34.75 0.947
SepConv L1 [18] 34.03 0.899 42.49 0.983 34.78 0.947
CyclicGen [10] 31.33 0.839 41.28 0.975 35.11 0.949

Our baseline 34.28 0.903 42.50 0.984 34.39 0.946
+ asymmetric flow 34.33 0.904 42.54 0.985 34.40 0.946
+ feature loss 34.29 0.901 42.62 0.984 34.60 0.948
+ cyclic loss 34.33 0.900 42.73 0.984 34.62 0.947
+ motion loss 34.31 0.900 42.74 0.984 34.61 0.948
+ larger patches 34.60 0.907 43.14 0.986 34.69 0.948
+ CFT 34.91 0.912 43.21 0.986 34.94 0.949

Comparison with state-of-the-art. Table 2 shows that our best method,
with or without CFT, clearly outperforms the other methods on SlowFlow and
See you Again, which is also reflected in Figure 4. On UCF101 our best method
performs better than all other methods except CyclicGen, where our best method
has the same SSIM but lower PSNR. We suspect this is partly due to the fact
that our CFT does not have access to ±2 frames in all sequences. For some
of the sequences, we had to use −1,+3 as the intermediate frame was at the
beginning of the sequence. Visually, our method produces better results as seen
in Figure 5. We note that CyclicGen is trained on UCF101, and their much worse
performance on the two other datasets could indicate overfitting.

Effect of various model configurations. Table 2 reveals that an asymmetric
flow around the interpolated frame slightly improves performance on all three
datasets as compared with enforcing a symmetric flow. There is no clear change
in performance when we add feature loss, cyclic loss and motion loss.

For all three datasets, performance improves when we train on larger image
patches. Using larger patches allows for the network to learn larger flows and the
performance improvement is correspondingly seen most clearly in SlowFlow and
See You Again which, as compared with UCF101, have much larger images with
larger motions. We see a big performance improvement when cyclic fine-tuning
is added, which is also clearly visible in Figure 6.

Discussion. Adding CFT to our model increases the run-time of our method
by approximately 6.5 seconds per frame pair. This is not dependent on image
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Input frames Ground truth DVF [11] SepConv L1 [18] CyclicGen [10] SuperSlomo [6] Ours

Fig. 5. Qualitative comparison for two sequences from UCF101. Top: Our method
produces the least distorted javelin and retains the detailed lines on the track. All
methods perform inaccurately on the leg, however, SuperSlomo and our method are
the most visually plausible. Bottom: Our method and SuperSlomo create accurate
white squares on the shorts (left box). Our method also produces the least distorted
ropes and white squares on the corner post, while creating foreground similar to the
ground truth (right box).

size, as we only fine-tune on 256× 256 patches for 50 iterations per frame pair.
For reference, our method takes 0.08 seconds without CFT to interpolate a
1920× 1080 image on an NVIDIA GTX 1080 TI. It should be noted that CFT
is only necessary to do once per frame pair in the original video, and thus there
is no extra overhead when computing multiple in-between frames.

Training for more than 50 iterations does not necessarily ensure better results,
as we can only optimize a proxy of the interpolation quality. The best number of
iterations remains to be determined, but it is certainly dependent on the quality
of the pre-training, the training parameters, and the specific video.

As of now, CFT should only be used if the target is purely interpolation
quality. Improving the speed of CFT is a topic worthy of further investigation.
Possible solutions of achieving similar results include training a network to learn
the result of CFT, or training a network to predict the necessary weight changes.

5 Conclusion

We have proposed a CNN for video frame interpolation that predicts two optical
flows with pixelwise weights from an unknown intermediate frame to the frames
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Overlaid input frames Ground truth Ours without CFT Ours

Fig. 6. Representative example of how the cyclic fine-tuning improves the interpolated
frame. It can be seen that the small misalignment of the tire and yellow “41” is corrected
by the cyclic fine-tuning.

before and after. The flows are used to warp the input frames to the intermediate
time step. These warped frames are then linearly combined using the weights to
obtain the intermediate frame. We have trained our CNN using 1500 high-quality
videos and shown that it performs better than or comparably to state-of-the-art
methods across three different datasets. Furthermore, we have proposed a new
strategy for fine-tuning frame interpolation methods for each specific frame at
evaluation time. When used with our model, we have shown that it improves
both the quantitative and visual results.

Acknowledgements. We would like to thank Joel Janai for providing us with
the SlowFlow data [5].
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Abstract

For many applications in augmented reality (AR), the
user has a much more enjoyable experience if the AR sys-
tem is able to properly guide the user’s attention. In this ex-
tended abstract, we explain how to create patterns of light
that when projected onto an object are perceived as if the
object itself is moving. This can be used as a spatial atten-
tion cue. We accomplish this with a calibrated projector-
camera setup to synthesize an image from the projector’s
point of view. This image is filtered to create local phase
changes that are then projected back onto the object and
perceived as motion. Our method will be shown as a live
demonstration at the CV4AR/VR workshop at CVPR 2019.

1. Introduction
Visual attention is important as it affects our perfor-

mance in many visual tasks [2]. To successfully accomplish
tasks such as visual search or tele-assistance we need effec-
tive spatial attention cues to attract the attention of a user.
What constitutes an effective cue is in part determined by
the task at hand. A very obvious cue, such as a big bounc-
ing red arrow, might be the best, if the purpose is to alert
the user of possible danger. In many other situations, how-
ever, more subtle cues might be preferred. This could be in
the setting of an escape room game where we would guide
players towards the next clue if they are stuck. A very ob-
vious cue could possibly ruin the fun of the game, however
a subtle one, which would take longer to notice, could be
useful.

As described by Carrasco and Barbot [2], our attention
is involuntarily captured by sudden changes in the environ-
ment. We seek to exploit this effect by creating apparent
motion through light projection. While the human ability to

∗These authors contributed equally to this work.

(a) Left camera (b) Projector (c) Right camera

Figure 1. Example of a synthesized image from the projector’s
point of view (b), along with the camera images the intensities
are sampled from (a, c).

detect motion is not better in the peripheral vision [10], the
speed of visual processing does increase in the peripheral
vision [3]. When something moves differently compared to
the movement of the observer, it becomes a powerful cue
to attract attention, especially in the periphery of the vi-
sual field [12]. This is referred to as a relative-motion cue.
Our idea is to guide attention by creating apparent relative-
motion cues in a scene by means of a light projector that
modifies the appearance of a physical object to make it look
as if it were moving, thereby creating illusory motion.

2. Projecting Illusory Motion

Prior work in guiding visual attention has mainly been
focused on head-mounted displays and images displayed on
a screen. The spatial attention cues used include flicker-
ing [16, 17], blurring [8], and color manipulation [9]. Spa-
tial projection has been shown to be more effective than
head-mounted displays in providing spatial instructions in
assembly tasks [1]. Research in attention cues for spa-
tial projection is however limited. Some use laser projec-
tion [14, 7] as a simple cue. Similar to our approach Taki-

1



Figure 2. Five frames sampled from the continuous loop of motion our method produces. Top row: Picture of object taken with
camera. Bottom row: Image projected by projector to create corresponding picture. Videos showing the effect can be seen at
http://people.compute.dtu.dk/jnje/illusory-motion.

moto et al. [15] uses a calibrated projector-camera setup.
They modulate color information recorded with the camera
and project the result back onto the object. For humans,
the sensitivity to color variations declines faster compared
with the sensitivity to luminance [6]. It thus seems natural
to investigate modifying the luminance instead.

Our approach to create the illusion of motion is based
on adapting the work by Freeman et al. [4] to a projector-
camera setup. In short, they apply local filters with contin-
uously varying phase over time to the image. This is based
on the observation that local phase changes are interpreted
as global motion. We synthesize an image from the view-
point of the projector (Figure 1) and use it as input for their
method. The filter response is then projected back onto the
object. In Figure 2, examples of the object with the filter
response projected onto it are shown along with the images
projected.

2.1. Projector-camera calibration

We use two cameras and a projector mounted in a fixed
setup, and we model the projector and cameras as pinhole
cameras with radial distortion. To calibrate the system we
encode the projector’s pixel coordinates using structured
light [13], detect corners in images of a checkerboard and

convert these to the projector’s pixel space by local homo-
graphies [11]. The projector and cameras are then calibrated
with Zhang’s method [18].

2.2. Synthesizing image from projector’s point of
view

To synthesize an image from the projector’s point of
view we use structured light to create two 3D-scans of the
object - one based on each camera. The resulting point
clouds and the pixel intensities associated with the points
are then projected back to the projector to form the desired
image (Figure 1). Creating two separate 3D-scans enables
us to scan all points visible in the projector and at least one
camera, thereby getting better coverage of the object. After
the points from each scan have been projected to the pro-
jector’s pixel space they are rounded to the nearest integer
pixel. Because the projector has a lower resolution than the
cameras, each pixel in the projector contains multiple mea-
surements. We compute medians of these to obtain a single
value per pixel.

2.3. Creating Illusory Motion

With the image from the projector’s point of view, we
can directly apply the method of Freeman et al. [4] to this



image. As the filter responses contain both positive and neg-
ative values, and the projective setting has the constraint of
only adding light, we add a constant value to the filter re-
sponse to make all values positive. The filtered image is
multiplied with a mask to restrict light to the object, and the
resulting image is projected onto the object. Examples of
the projected image and the resulting effect are in Figure 2.

3. Future work

We can perhaps utilize the 3D information obtained
through our process to make the projected patterns less view
dependent. Because we know the 3D position of each pixel
in addition to its intensity, we can compute a normal at each
point. If we, based on these normals, choose a consistent
orthonormal basis at each point, such that the basis changes
smoothly over the object [5], and assuming that the object
is locally planar, we can project the filter onto this plane,
and thereby approximate convolution along the surface of
the object instead of in image space.

Our current work has been focused on creating the illu-
sion of motion. Further work is needed to determine un-
der which circumstances it is perceived as motion and to
determine its effectiveness as a spatial attention cue. Fur-
thermore, examining how it affects the user’s experience of
interacting with the AR system, and how our cue compares
with using alternative spatial attention cues is important to
examine. Reasonable variables to look into would be how
much light is necessary to make the effect noticeable and
how this varies across the visual field.
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Rendering images that match the appearance of real world objects is essential in methods for analysis by
synthesis and in appearance prediction. We provide guidelines for step-by-step composition of a model
to represent the appearance of a real object. This requires alignment of renderings with a corresponding
photograph. We provide a practical method for alignment of a known object and a point-like light source
with the configuration observed in a photograph. Our method is based on projective transformation of
object edges and silhouette matching in the image plane. Our goal is to support development toward
progressive refinement of appearance models through quantitative validation.

1. INTRODUCTION

Photorealistic rendering has many applications: product ap-
pearance prediction, digital prototyping, inverse rendering to
acquire optical properties, 3D soft proofing, etc. In most of
these applications, it is important to validate the photorealism
of the employed rendering technique. In graphics, side-by-side
visual comparison of rendered and photographed images has
traditionally been the validation method of choice. Phong [1],
for example, qualitatively compared a rendered sphere with a
photographed sphere as a final evaluation of his shading and
lighting models. Similarly, the Cornell box [2, 3] was presented
as a test scene for qualitative comparison of photographs and
rendered images. Rushmeier [4] was seemingly the first to dis-
cuss quantitative comparison of photographed and rendered
images, and Pattanaik et al. [5] then presented a difference image
for rendering versus photograph of a version of the Cornell box.
Differences in scene geometry and the view-light configuration
tend to be the main difficulty in setting up such pixel-by-pixel
comparisons [4, 6].

Alignment of rendered and photographed images has
reached good precision in controlled setups for geometry and
reflectance acquisition [7]. For images captured in less controlled
settings, the main difficulties are pose estimation of an object
from a given CAD model and light source estimation. These
are most often considered two separate problems. For pose esti-
mation, a large dataset is usually employed to train a statistical
model [8, 9]. A multitude of techniques exist for light source
estimation [10, 11]. However, as we estimate the object pose, we
may as well use the pose for light source estimation. Moreover,
if using the cast shadow for estimating the light position, we can
use it to improve the estimate of the object pose as well.

Inverse rendering [12] enables recovery of both lighting and

reflectance properties but often assumes a known object with a
known pose. More recent inverse rendering techniques [13, 14]
allow pose estimation and deformation of object geometry too.
These techniques are based on differentiable rendering, where
per pixel derivatives are computed as part of the rendering.
While this is a powerful approach for estimating surface dis-
placements and spatially varying reflectance [13], it is also a
gradient-based optimization based on per pixel derivatives that
requires careful initialization to avoid local minima [14]. In this
landscape, we missed a practical method for estimation of both
object pose and light source position to enable pixel-by-pixel
comparison of a photograph with a rendering. We propose such
a method and find that it delivers a good starting point for vali-
dating rendering techniques, estimating optical properties, and
testing appearance models. In addition, our method is useful
for initialization of inverse rendering techniques.

Our outset is a photograph of a single object of known geom-
etry that has been captured with a known camera. We assume
that the object is placed on a planar surface and illuminated by
a point-like light source. In this scene configuration, we let the
user approximately initialize the orientation of the object relative
to the planar surface (this could be done using a physics engine),
or we use a camera calibration. Our method then estimates the
light source position and the camera and object poses. We do
this by segmenting the photograph and matching the object and
the shadow silhouettes to the silhouettes of the virtual object
found by projective transformation of the edges.

We exemplify our method using three scanned objects (see
Figure 1): the Stanford bunny [15], an angel figurine, and an alu-
minium bust of H. C. Ørsted (the scientist who discovered elec-
tromagnetism and who was also the first to isolate aluminium).
The Stanford bunny was scanned by Greg Turk using a tech-
nique for zippering several range scans [16], and we 3D scanned
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photograph (x) rendering (y) (max(y− x, 0))1/γ (max(x− y, 0))1/γ

Fig. 1. Pixel-by-pixel comparison of renderings with a photograph enables a detailed investigation of the virtues and deficiencies of
an appearance model. Our practical alignment technique is here used for testing different models: rough transparent (top), rough
translucent (middle), and metallic (bottom). Difference images were brightened with γ = 2.2 to clearly visualize the deficiencies.

the other two objects using structured light and stereo vision [17].
We use a translucent 3D printed version of the Stanford bunny,
the angel figurine was 3D printed using an almost transparent
photopolymer, while we used the aluminium bust as is. This
enabled us to take photographs and test appearance models
for both subsurface scattering, rough refraction, and metallic
rough reflection. We quantitatively test the ability of such mod-
els to match the appearance of object samples from the real
world (Figure 1), and we suggest improved models based on our
findings. Notably, we for the first time integrate rough surface
scattering [18] with the directional dipole model for subsurface
scattering [19].

2. RELATED WORK

In many side-by-side comparisons of renderings with pho-
tographs [1–3, 6, 12, 20], alignment is done manually. This is usu-
ally a time-consuming process with an imprecise result. When a
comparison is done in the context of 3D acquisition, alignment
is given with good accuracy because the object geometry was
acquired in a calibrated setup [21, 22]. We are however looking
for an alignment method that does not require concurrent 3D
scanning of the object. Differentiable rendering [13, 23, 24] is
useful for improving a manual alignment, but we would like
to avoid the initial manual alignment. We thus use vision tech-
niques to do the alignment and think of our technique as an
enabler for an inverse (differentiable) rendering system, which
is then free to focus on estimation of parameters not related to
alignment.

Our work is related to CAD-based vision [25], where the
CAD model of a 3D object is used to recognise the physical
version of the object in an image. An important part of such

recognition is pose estimation of the object. In a view-based
approach [26, 27], multiple views of the object are used for the
training of a statistical model to recognise the object and suggest
an initial pose. The views can be obtained from photographs
captured in a calibrated robot setup [26] or from rendered images
of object edges [8, 27, 28]. After estimating an initial pose using
a statistical model, the pose is typically refined using iterative
shape matching [27, 29]. We combine some of these ideas. Petit
et al. [28] suggest a method based on foreground/background
segmentation in the case of a moving object. Our method is also
based on such a segmentation but for a static object. As in the
discussed previous work, we use the edges of the CAD model
for pose estimation, specifically the silhouette [8], but we avoid
the training of a statistical model based on a dataset with many
views.

Iterative methods for pose estimation [29] are good for pose
refinement but also prone to local minima if not carefully ini-
tialised. An exhaustive search for initial parameters is then
needed if we want to avoid the training of a statistical model,
but such a search is infeasible for the full 6D pose of an object.
An option is then to limit the dimensionality of the search space
using invariants [30, 31]. Hu’s moment invariants [32] are for
example invariant to scale, rotation, and translation. For a 2D
shape, this reduces the search space in pose estimation to two
angular dimensions [30]. We use this concept for 3D shapes by
applying it to the object silhouette found in the image plane.

If one is willing to generate a dataset of object silhouettes
(for example) as observed across a view sphere, the pose esti-
mation can be accomplished using shape descriptors even for
cluttered scenes [33]. After image segmentation and initial pose
estimation, refinement is still required using an iterative method.
Several other learning-based techniques are available as well [34–
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37]. These all require a large dataset for training and pose re-
finement after estimating the initial pose. Interestingly, Tekin
et al. [38] report a fast learning-based method that does not re-
quire pose refinement, but then Li et al. [39] present an iterative
learning-based method for pose refinement with improvements
over Tekin et al. Peng et al. [9] present an improved method
inspired by Tekin and others that indeed seems not to require a
posteriori pose refinement. This is based on an extensive dataset
augmented with 20,000 synthetic images of each object. These
learning-based techniques contribute robustness with respect to
object detection. This is however not important for our scenes
which must, in any case, be uncluttered to enable photorealistic
rendering of a corresponding digital scene.

A distinctive advantage of our silhouette matching approach
is that we can estimate the light source position too. In this way,
we avoid the traditional calibration of a point light by observing
highlights in mirroring spheres [7]. Our method employs the
shadow silhouette, which we find using Blinn’s projection shad-
ows [40]. In some related work [41], the shadow silhouette was
detected in an input image with depth information (RGB-D) and
used for estimating the position of one or more light sources.
However, since we estimate the pose of a known object together
with the position of the light, we do not need the depth infor-
mation. In addition, our treatment of pose and light as a joint
problem enables us to refine the estimation of both.

3. ALIGNMENT METHOD

Our method is based on the following input:

- image of an object on a uniform ground plane illuminated
by a point-like light source

- segmentation of the image into object, shadow, and back-
ground

- 3D model of the object
- camera intrinsics (focal length / camera constant / field of

view)
- approximate rotation of the object relative to the ground

plane.

Any camera can be used to capture the input image, but we
need to know the field of view. If this is not known for a given
camera, we can obtain it through camera calibration, but we
exclude images captured with an unknown and unavailable
camera. In most cases, the segmentation can be accomplished by
appropriate thresholds of the input image. In harder cases, such
as transparent objects, a good segmentation can be obtained
through background subtraction based on one image with and
one without the object.

Although we work with one light source per view, we also
illuminate a static object with multiple light sources in different
positions one at a time. In this case, we use the additional
information to improve the object pose and light source positions
in a final refinement step.

To obtain object pose and light source position, we project
the 3D model into the image plane of the camera and extract the
silhouette. Our method aligns the silhouette in this plane with
the corresponding silhouette in the input image. We obtain the
latter from the segmentation of the input image. The silhouette
is a useful representation that enables different comparisons of
two silhouettes with options for being either exact or invariant
to various measures such as rotation and translation, all while
being differentiable.

We define a silhouette as a list of 2D point pairs each rep-
resenting an edge with a direction. In analogy with a triangle

Algorithm 1: Computing a silhouette from edges of a mesh
projected to a plane. Each edge exists once in each direc-
tion.
p := p0 (the leftmost point)
e := edge from p with the largest slope
repeat

from p follow e until next intersection, pnew
enew := choose from edges intersecting pnew such that
angle(enew, e) is minimized

p := pnew, e := enew
until p = p0

mesh, we can use an indexed edge set to represent a silhouette
or a set of lists of 2D points, where the points in each list are
connected by edges. This works in general, as we can describe
objects with holes (nonzero genus) by having both outer and
inner perimeters. An inner perimeter should then be in the
opposite direction.

A. Silhouette Computation
To compute the silhouette of the real object, we enlarge the seg-
mentation resolution by a factor of two using nearest neighbor
sampling. We then use the algorithm by Suzuki and Abe [42, 43]
to trace the perimeter of the object. We downscale the traced
perimeter and round the coordinates so that they lie exactly on
the border between object and background. After tracing the
perimeter, we have an optional step to simplify the perimeter to
accelerate computations later on. The optional simplification is
done using the Ramer-Douglas-Peucker algorithm [44, 45].

We compute silhouettes of the 3D models without rasteri-
zation. This makes the silhouettes directly differentiable with
respect to scene parameters, which is an advantage in a gradient-
based optimization. Given a CAD model, we extract a polygo-
nal mesh and build a half-edge representation of this for easy
queries. For a given view matrix, we project the vertex positions
to the image plane and connect them using the edges of the mesh
polygons. To compute the silhouette, we traverse these edges
using Algorithm 1. This algorithm assumes a fully connected
object silhouette without holes. Extension to objects with holes
is done by restarting the algorithm inside each hole.

For the silhouette computation in Algorithm 1, we find the
signed angle between two vectors in 2D using

angle
([

a1
a2

]
,
[

b1
b2

])
= atan2 (a1b2 − a2b1, a1b1 + a2b2) . (1)

The majority of time in Algorithm 1 is spent computing edge
intersections [46]. Computational complexity thus depends on
the number of edges. We significantly reduce this number by
exploiting that an edge can only be part of the silhouette if it is
shared by one face facing the camera and another facing away.
If we let~ne,1 and~ne,2 denote the 3D surface normals of the faces
bordering an edge e, the edge e can only be part of the silhouette
if (

~ne,1 · (ve − c)
)(
~ne,2 · (ve − c)

)
≤ 0 , (2)

where ve is any point on the edge and c is the position of the
camera. After removing all edges that cannot be part of the
silhouette and building a bounding volume hierarchy for the
remaining edges, intersection testing is inexpensive just like in
ray tracing.

Another way to reduce the computation time of this algo-
rithm is to use a mesh with a lower polygon count for the silhou-
ette while retaining the original mesh for rendering. A modest
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Fig. 2. Illustration of how sim(R, V, n) is computed for a small
value of n. The arrows illustrate evaluations of dist(·, ·).

mesh simplification often has a negligible influence on the sil-
houette.

We have several options when computing silhouette deriva-
tives. For simplicity, we use finite differences. Exact derivatives
can be obtained by using dual numbers.

B. Shadow Contours
To include the shadow of an object when considering its silhou-
ette, we assume that the object is placed on a planar surface and
use projection shadows [40]. This is also done without rasteri-
zation to keep our method valid for the entire image plane. We
project the edges of the mesh to the ground plane to generate
shadow edges. We then project both object and shadow edges
to the image plane of the camera. After this, we use Algorithm 1
to compute the silhouette of the object including its shadow.
The number of edges in the shadow that we need to consider is
reduced early in the procedure by substituting c with the light
position in Eq. (2).

C. Silhouette Matching
To be able to align silhouettes, we introduce a silhouette similar-
ity metric. We refer to the silhouette of the real object observed
by camera c as Rc, and the union of object and shadow silhou-
ettes as Rc,`, where ` is the light source causing the shadow.
Equivalently, we define for the virtual object Vc and Vc,`. We
now let P(X, t) denote a parameterization of the silhouette X
with t ∈ [0, 1]. We measure the similarity of two silhouettes
by using a function (dist) that finds the shortest distance from
a point to a silhouette. Taking n equidistantly sampled points
on the silhouettes, we find the shortest distance to the other
silhouette and take the sum. The similarity is then computed by

sim(R, V, n) =
n

∑
i=1

(
dist

(
R, P

(
V, i

n

))
+ dist

(
V, P

(
R, i

n

)))
,

(3)
A visualization of what sim computes is in Figure 2. We can
again use a spatial data structure to obtain an efficient imple-
mentation of the dist function [47]. Our similarity metric (sim)
has the advantage that it has a nonzero gradient even for non-
intersecting silhouettes, which enables the use of our method
with a poor initial guess.

Our final goal is to minimize the difference between the sil-
houettes of the real and virtual objects. For a silhouette without
shadow, we measure the similarity by

Ec = sim(Rc, Vc, d‖Rc‖e) , (4)

where ‖ · ‖ denotes the length of a silhouette in pixels. Ideally,
we would like to sample as many points as possible. In this
performance vs. accuracy trade-off, we have chosen n = d‖Rc‖e
to place the sampled points approximately one pixel apart.

To compare silhouettes including shadows, we introduce
a similarity measurement Ec,`. As mentioned previously, we
would like to refine estimates using multiple cameras and light
sources as long as only one is active per image. We compute the
sum of comparisons of silhouettes over one or more configura-
tions as follows:

Es = ∑
`

∑
c

(
sim(Rc,`, Vc,`, d‖Rc,`‖e)︸ ︷︷ ︸

Ec,`

+Ec

)
. (5)

In the following, we describe how we estimate object pose and
light source position using these silhouette similarity measure-
ments.

D. Pose Estimation
We compute the pose of the object independently for each cam-
era. We do this in camera space, where the camera is fixed at the
origin. In the end, we can then use the known relation between
object and ground plane to position each camera in world space.

Starting in camera space, the first step of the pose estimation
is to find an initial guess for the position of the object. We do
this by minimizing Ec with respect to the position, which places
the virtual object approximately in the same position as the real
object.

To find a good initial guess of the rotation, we randomly sam-
ple rotations. For each rotation, we compare the silhouette of
the digital object to the real object using Hu’s moment invari-
ants [32]. These are calculated from image moments but are
invariant to scale, rotation, and translation. For an image of
pixel values I(x, y), the image moments are defined by

Mpq =
∫ ∞

−∞

∫ ∞

−∞
xpyq I(x, y) dx dy, (6)

where the p and q exponents are the moment orders and inte-
gration is across the image plane. Since the silhouette can be
considered a polygon, the image moments can be computed
efficiently by applying Green’s theorem [48]. Hu’s moment in-
variants are seven polynomial combinations of image moments
that we store in a vector and compare using the sum of squared
differences. Using the Hu moment invariants, the search space
of the rotation is practically reduced to two dimensions. The
rotation giving the silhouette that best matches the Hu moment
invariants of the real silhouette is chosen as the initial guess of
the rotation. We parameterize the rotation using quaternions
and use the centroid of the object as the rotation centre.

With these initial guesses for position and rotation, we min-
imize Ec, which gives an object pose for each view. We use
Levenberg-Marquardt [49, 50] for the minimization. This is pos-
sible as Ec is a sum of squares. As part of our input, we know
the object pose in relation to the ground plane. We use this to
convert the per camera object poses into camera poses in world
space.

E. Light Positions and Final Refinement
To estimate the position of each light, we randomly sample posi-
tions and then choose the one with the lowest Ec,` for each light.
Following this, Ec,` is minimized using Levenberg-Marquardt.

The last step of our method is a joint optimization where
we minimize Es with respect to object pose, camera pose(s),
light position(s), and a non-uniform scaling of the mesh. The
non-uniform scaling of the mesh is to compensate for some of
the shrinkages that may occur during 3D printing. The final
optimization of the object pose is beneficial as the inclusion of
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the shadow silhouette(s) enables us to use more information
from the input image.

F. Known Camera Poses

If camera poses are known in advance, for example from a stereo
calibration of the camera rig, we can use the same steps as in
Sec. D to find the pose for all cameras jointly. When finding
the rotation, it is then no longer desirable to have rotational
invariance for all cameras. Instead, we propose to rotate the
object to align the normalized image moments of the virtual and
digital objects in the best way possible along a randomly chosen
camera’s viewing direction. The rotation is found by aligning
the principal components of the two silhouettes [51]. We choose
the rotation that best matches the normalized image moments
across all cameras as the best rotation.

An initial guess of the object’s scale is required, but if the
camera poses are known in relation to the ground plane, we need
not know the rotation of the object relative to the ground plane.
The method for light source estimation is as with unknown
camera poses.

4. COMPOSING APPEARANCE MODELS FOR REAL
OBJECTS

Rendering systems provide a multitude of rendering techniques
that we need to choose among when composing an appearance
model for a real object. We start from a very approximate model
at the most macroscopic scale. We then gradually increase com-
plexity by reconsidering the involved optical properties [52] and
what types of materials and visual effects that they can model.

At the most macroscopic scale, we have the bidirectional
reflectance/transmittance distribution function (BRDF/BTDF)
and the simplest models at this scale are the ones for perfectly
diffuse and perfectly specular materials [53]. To cover a broad
spectrum of different material types, we consider three different
starting points: (a) diffuse, (b) metallic, or (c) transparent. In
the following, we describe existing appearance models for these
material types as well as model extensions (Sections A–C).

The perfectly diffuse (or Lambertian) material is a good start-
ing point for objects that exhibit a significant amount of subsur-
face scattering (a). The BRDF of a perfectly diffuse material is
fr,d = ρd/π, where ρd is the bihemispherical diffuse reflectance,
which we can set in an RGB renderer using a colour vector in
[0, 1]3. This reflectance represents the subsurface scattering of
the material. We can then add an interface to model highlights
and switch to a bidirectional scattering-surface reflectance distri-
bution function (BSSRDF) to model translucency.

The Fresnel equations for reflection are an excellent starting
point for metallic and transparent objects (b-c). Given an in-
terface between two media of refractive indices ni and nt, the
Fresnel equations provide complex ratios of reflected to incident
wave amplitudes for the part of the light polarized perpendicu-
larly (⊥) and parallelly (‖) to the plane of incidence [54]:

r̃⊥ =
ni cos θi − nt cos θt
ni cos θi + nt cos θt

, r̃‖ =
nt cos θi − ni cos θt
nt cos θi + ni cos θt

. (7)

Here, i is subscript for incidence and t is for transmission. For
unpolarized light incident on a perfectly smooth interface, the
bidirectional reflectance is

F =
1
2

(
|r̃⊥|2 + |r̃‖|2

)
, (8)

and we find the cosine of the angle of refraction by

cos θt =

√
1−

(
ni
nt

)2
(1− cos2 θi) . (9)

The cosine resulting from this formula may be a complex num-
ber, and refractive indices of conductors (metals) and absorbing
materials are also complex. Taking absolute values in Eq. (8) is
thus important to obtain a real-valued bidirectional reflectance.
These formulas return the right result both in the case of total
internal reflection and in the case of metals/conductors.

The BRDF/BTDF of a perfectly smooth or a rough interface
are available from Walter et al. [18]. The BRDFs presented by
these authors work just as well for metals as long as we use
the complex index of refraction of the metals to find the Fresnel
factor F. The key difficulty in use of the Fresnel equations is that
indices of refraction are physical parameters that are defined
as a spectrum rather than colours. We can convert a spectrum
to a representative RGB vector using weighted averages based
on RGB colour matching functions [55, 56]. Assuming known
(complex) index of refraction, the key parameter for metallic and
transparent objects is the surface roughness (which is different
for different surface microfacet distributions [18, 57]).

A natural extension of the diffuse model (a) is to introduce a
refractive interface. The BRDF then becomes a sum of a specular
and a diffuse component [58]. We can think of the specular term
as in-surface scattering and of the diffuse term as subsurface scat-
tering. The Fresnel equations are then useful for ensuring energy
conservation (and reciprocity) both for smooth surfaces [59] and
for rough surfaces [60]. The trick is to sample the BRDF/BTDF
of a transparent surface [18] and then let incident light that re-
fracts into the material reflect diffusely before it refracts back
out of the material using the BTDF of the surface again but this
time for the outgoing direction. This enables addition of glossy
reflections and highlights to an object with an otherwise matte
appearance.

A natural extension of the transparent model (b) is to account
for absorption based on the distance d that a ray travels through
the interior of the object. This is done using an (RGB) absorption
coefficient σa and Bouguer’s law of exponential attenuation of
light (attenuation factor e−σad). The absorption coefficient is di-
rectly linked to the imaginary part of the index of refraction [54]:

σa =
4π Im(nt)

λ
, (10)

where λ is the wavelength in a vacuum and Im takes the imag-
inary part of a complex number. The index of refraction was
assumed known, and for metals σa is very large. We can thus
assume that all light transmitted into a metal is absorbed. How-
ever, for transparent objects, Im(nt) is often very small and
σa may need some adjustment to account for dissolved sub-
stances [55] or impurities [56]. The absorption coefficient then
becomes an RGB parameter in the model that controls the colour
of transmitted light.

A further extension of the diffuse model (a) is to replace fr,d
with proper subsurface scattering, where light may be incident at
one surface position and observed at another. In terms of input
parameters, this requires knowledge of the (RGB) scattering co-
efficient σs and the phase function. The latter is the distribution
of the scattered light, which is often represented by an analyt-
ical model taking an (RGB) asymmetry parameter (g) as input.
Several rendering techniques are available for evaluating the
volumetric light transport between two surface positions [61].



Research Article Applied Optics 6

For highly scattering materials, however, a full-fledged unbiased
path tracing technique [62] is unpractical due to long rendering
times. We need faster rendering when tuning parameters based
on comparison of renderings with a reference photograph. A
more practical rendering technique for subsurface scattering is
then to use an analytical approximation of the BSSRDF [19, 20].

The standard dipole approximation for subsurface scatter-
ing [20] does not model how the direction of the incident light
influences the subsurface scattering. To include this component,
we can use a directional dipole approximation [19]. However,
these models use Fresnel terms that assume a perfectly smooth
interface. Donner and Jensen [63] explained how to account for a
rough surface with a distribution of microfacet normals [57, 58].
In the following, we describe how to account for a rough surface
in the case of a model that accounts for the directional depen-
dency of the subsurface scattering. We also describe simplistic
models that we use to account for spatial variation in the surface
roughness of our example objects.

A. Directional Subsurface Scattering for Rough Surfaces
The BSSRDF depends on the object geometry X, the position xi
and the direction ~ωi of the incident light as well as the position
xo and the direction ~ωo of the observed light. The normals at the
points of incidence and observation~ni and~no are known from
the object geometry. An analytic BSSRDF model developed for a
material with a smooth surface then usually has the form

S(X; xi, ~ωi; xo, ~ωo) = Ft(~ωo ·~no)(Sd + S∗)Ft(~ωi ·~ni) , (11)

where Ft = 1− F is Fresnel transmittance, Sd is the diffusive part,
which is typically modeled by a dipole, and S∗ is the remaining
light transport. The number of arguments used with Sd and S∗

is different for different models.
To incorporate a rough surface in a BSSRDF model of this

kind, we add a BRDF in the special case where the point of
incidence equals the point of emergence, and we insert hemi-
spherical transmittance integrals in place of the Fresnel terms:

S(X; xi, ~ωi; xo, ~ωo) = δ(xo − xi) fr(xo, ~ωi, ~ωo)

+
∫

2π

∫

2π
ft(xo, ~ω21, ~ωo)(−~no · ~ω21)(Sd + S∗) dω21

ft(xi, ~ωi, ~ω12)(−~ni · ~ω12) dω12 , (12)

where fr is the BRDF and ft is the BTDF of the surface, δ is a
Dirac delta function, ~ω12 is the direction of a ray transmitted into
the volume, and ~ω21 is the direction of a ray to be transmitted
out of the volume. The directions ~ω12 and ~ω21 would thus be
the ones to use as arguments for the S-functions.

The S∗ term is usually fully directional, and the integrations
over BTDFs at xi and xo are evaluated using regular volume
path tracing with rough refraction at the interfaces. In the case
of the standard dipole [20], S∗ = S(1) includes evaluation of
single scattering in the volume. In the case of the directional
dipole [19], S∗ = SδE is evaluated in the same way as absorp-
tion in a transparent material, but with a modified coefficient
in the exponential attenuation. One should note that analytic
expressions are available for the Fresnel transmittance integrals
in cases where Sd is independent of ~ωi and/or ~ωo [63, 64]. Some
care must be taken as some models [19, 64] assume a diffuse dis-
tribution of the light at xo and then include the integration over
~ω21 in their formulation. In the case of the directional dipole,
our expression becomes

S(X; xi, ~ωi; xo, ~ωo) = δ(xo − xi) fr(xo, ~ωi, ~ωo) + S∗δE

+
∫

2π
Sd,dir(xi, ~ω12; xo) ft(xi, ~ωi, ~ω12)(−~ni · ~ω12) dω12 ,(13)

where Sd,dir is the diffusive part of the BSSRDF in the directional
dipole model, but taking the transmitted direction directly as
input instead of ~ωi, and S∗δE is the modified reduced intensity
term appearing in this model, but here including the BTDF
integrations (rough refractions at the interfaces).

Comparing Eq. (12) to common illumination models [1, 58],
the first term corresponds to the specular term and the second
term corresponds to the diffuse term. The BRDF fr to be used
for the first term should therefore not include an added diffuse
term. The BSDF (collective name for BRDF and BTDF) used in
Eq. (12) should rather depend only on surface properties, such
as a distribution of microfacet normals, see the work of Walter
et al. [18] for examples. In particular, we use the so-called GGX
distribution developed by these authors. This distribution has a
width parameter αg that we refer to as the GGX roughness.

B. Surface Roughness of a 3D Printed Object
Since most 3D printers print in layers, the surface of a printed
object is usually rougher when the intended surface normal
points in a direction aligned with layer edges in the voxel cubes
of the print volume. If the z-axis is the print direction, we can
use the following function to control the GGX roughness (αg)
based on the z-component of the surface normal (nz):

αg = ρ + (1− ρ)
| sin(2θ)|s

s
= ρ + (1− ρ)

(
2|nz|

√
1− n2

z

)s

s
,

(14)
where θ is the angle of the surface normal~n with the z-axis. We
can think of the user parameters as follows: ρ ∈ [0, 1] is the
minimum roughness and s > 0 is the shininess, which controls
the height and width of the bumps in the curve around angles
of ±45◦, ±135◦.

C. Surface Roughness of a Polished Metal Object
Quick hand polishing of a metallic object can result in an object
with a rougher surface in curved areas and a smoother surface
in flat areas. One way to specify the curvature of an object is
using the mean curvature normal H [65]. This is a quantity that
we can precompute for a triangle mesh using vertex circulators
and store as a vertex attribute. The dot product of the outward-
pointing surface normal ~n and the mean curvature normal H
provides a signed measure of the curvature, where positive is a
concavity and negative is a convexity. We use the absolute value
of this dot product as an indicator of areas that were maybe
not as easy to polish. To reduce noise from the surface scan
and set a high roughness for curved areas, we employ a sigmoid
function. Our use of the mean curvature normal is demonstrated
in Figure 3, and the formula is

αg = ρ +
1− ρ

1 + exp(s (1− 30 |H ·~n|)) , (15)

where ρ is again minimum roughness and s is a sort of shininess
while H is the mean curvature normal after division by the
length of the longest mean curvature normal in the triangle
mesh.

5. RENDERING

We implemented a progressive unidirectional path tracer using
OptiX [66]. To include subsurface scattering, we sample a new
set of surface positions for each progressive update. For each
update and within each pixel, the ray tracer generates a random
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0.5 + H ·~n |H ·~n| αg

Fig. 3. Model of spatially varying roughness αg for an alu-
minium bust that has from time to time been subjected to hand
polishing. We use the dot product of the mean curvature nor-
mal H and the surface normal~n. The model correctly marks
eyes, hair, nostrils, and engraved letters as rough, but also in-
correctly marks edges along the box-like base of the bust as
being very rough.

position xp in pixel coordinates. With the rotation of the camera
relative to the object R and the camera intrinsic matrix K, we get
the direction of the corresponding ray using

~ω = (KR)−1S xp = RTK−1S xp . (16)

Since the intrinsic matrix K is locked to the resolution of the
camera (Wc×Hc), which is usually very high, we use the scaling
matrix S = diag(Wr/Wc, Hr/Hc, 1) to enable rendering in a
different resolution (Wr × Hr).

6. RESULTS

The three objects of interest are (a) a translucent 3D print of the
Stanford bunny, (b) an aluminium bust, and (c) a cupped angel
figurine 3D scanned and printed using almost transparent resin.
Two of our test objects (b-c) were 3D scanned using structured
light based on phase shifting [17]. Our 3D printed objects (a, c)
were produced using vat photopolymerization additive man-
ufacturing processes. In our pose estimation and renderings,
we used the geometry of these objects without correction for
print artifacts. The Stanford bunny was printed by Luongo et
al. [67] using red Industrial Blend resin (manufactured by Fun
To Do) and a digital light processing (DLP) printer developed for
research. The object was kindly lent to us. The angel was printed
using a commercial stereolithography (SLA) 3D printer (Peopoly
Maoi), and the general-purpose resin IM2.0 GP1 (manufactured
by AddiFab). We use a real index of refraction of 1.54 for the
printed objects as this is in the middle of the range of commercial
acrylic resins with low shrinkage after photopolymerization [68].
Our three objects all have a rough surface and exhibit different
types of spatial variation in this roughness.

We used our method to align renderings of the objects of
interest with their photographs. We then tested different ap-
pearance models following the presented guidelines, where we
started from a simplistic model and gradually added complexity.
In each case, our end result is an appearance model and a render-
ing paired with a photograph for validation that would serve as
a suitable starting point for an inverse rendering technique. The
optical properties that we estimated for our different objects are
in Table 1. The reference photographs and the associated CAD
files and relative camera and light source alignments will be
available as a supplement. We encourage the reader to use this

Object

Shadow

Fig. 4. Each image is an additive blend of three photos of the
bust illuminated by the light source at different positions and
overlaid with aligned silhouettes of the digital object.

Object
Shadow

Fig. 5. Photo of the bunny overlaid with the aligned silhouette
of the digital object.

dataset for testing preferred appearance models and rendering
software. Another option is to use the dataset for finding better
optical properties including better spatial variation of surface
roughness by means of inverse rendering.

A. Acquisition
The objects were placed on a flat piece of paper and illuminated
by a Thorlabs MNWHL4 LED light source. This source is neu-
tral white with a reasonably point-like radiation distribution.
The bunny (a) and the angel (c) were captured using a FLIR
Grasshopper3 GS3-U3-60QS6C-C camera, while the bust (b) was
captured using D3200, D7000, D7500 and D750 cameras from
Nikon. We used four cameras to cover all angles of the object
while also taking multiple images from the same positions with
different light positions. As different cameras were used, the
images of the bust were colour calibrated using a ColorChecker
from X-Rite. We performed camera calibration [43, 69] using
a ChArUco board which is a checkerboard with ArUco mark-
ers [70]. For the bunny (a), we did not use the estimated extrin-
sics and only used the estimated focal length from the intrinsics.

B. Alignment
To segment the photographs as required by our alignment
method, we used thresholding followed by hole closing and
selected the largest connected component. For the images of the
bunny and the angel, some manual cleaning of the segmentation
was necessary due to caustics.

Our test cases span different setups to showcase the flexibility
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Table 1. Estimated optical properties.
Material n σa σs ρ s

Bunny (FTD, red Industrial Blend) 1.54 (0.33, 25, 67) · 103 m−1 (10, 21, 0.083) · 103 m−1 0.20 2.4

Angel (AddiFab, IM2.0 GP1) 1.54 (0.032, 32, 640) m−1 0 0.15 5.0

Bust (aluminium) (1.04, 0.76, 0.49) + i (6.45, 5.73, 4.76) 1.3 · 108 n/a 0.22 4.5

Object

Shadow

Fig. 6. Photos of the angel overlaid with the aligned silhouette
of the digital object.

of our alignment method. For the bunny (a), we use just a single
picture with unknown camera pose to align the scene. For the
angel (c), we use two camera poses and a single light position to
do the estimation. Finally, the bust (b) was captured from four
camera poses, each with four different light source positions,
yielding a total of 16 images that we used to do the alignment.
The more light source positions, the more information we have
available for the pose estimation. This comes at the small cost of
increasing the dimensionality of the optimization problem. If we
again consider our method an enabler for inverse rendering, it is
an advantage to have multiple light positions as these provide
additional samples for estimation of BRDFs, for example.

Outputs from our alignment method are in Figures 4 to 6.
We achieve good alignment of the outlines of the bust, which
makes sense as this is the only object in our collection for which
the geometry is directly from the photographed object. Both the
angel and the bunny have a quite good alignment, but especially
the bunny has noticeable differences between the rendered sil-
houette and the object. We presume these mostly stem from
non-linear shrinkages during printing that our method cannot
account for. For the angel, our method estimated shrinkages of
3%, 6%, 1% in the x, y, z directions as compared to the size of an
ideal 3D print.

C. Appearance
Since our objects are placed on a piece of paper assumed to be
flat, we place a quad in the ground plane and resize it manually
to approximately fit the paper observed in the photograph. Pre-
cise alignment of the paper could be part of the object alignment,
but we find that it is not so important with respect to testing
the appearance model applied to the object. To start simple,
we consider the paper to be a diffuse surface. More complexity
could easily be added to the paper appearance model [71], but
we focus our attention on the objects of interest.

We initialise the diffuse reflectance of the paper to ρd =
(0.8, 0.8, 0.8) and select the simplest shading model for the mate-
rial category of the object in question. We then use the intensity
of the light reflected from the paper to estimate the intensity of
the point light. Since our source is neutral white, we use the
same intensity in all colour bands. An easy way to do a compar-
ison is using two coloured difference images: one for positive
difference and one for negative difference (see examples in Fig-

ure 1). Once the light intensity has been set, we modify the re-
flectance values until each colour appears equally in the positive
and the negative difference image. We also evaluate our results
quantitatively using root-mean-squared error (RMSE) (lower
is better) and structural similarity (SSIM) index [72] (higher is
better). The initial results for each of our three test cases are
leftmost in Figures 7 to 9.

To estimate absorption and scattering coefficients (σa and σs),
we need the physical size of the object as these optical properties
are measured per distance unit that a ray has travelled through
the material. Using the physical dimensions of the object, we
get the coefficients in Table 1. We decided to leave the phase
function as isotropic (g = 0) since the analytic BSSRDF models
mostly use the reduced scattering coefficient σ′s = σs(1− g) and
thus do not distinguish much between a reduction in σs and an
increase of g. The directional dipole is not exclusively based
on the reduced scattering coefficient, but the role of g seems
limited. When estimating the coefficients, 10 over the length of
the bounding box diagonal is usually a good value to start with
for the absorption or the scattering to have a reasonable effect.

Refinement of the model for the rough translucent bunny (a). Fig-
ure 7. We first add an interface to the model [59, 60] to en-
able rendering of highlights. However, this also directs a lot
of energy into a glossy reflection lobe meaning that the miss-
ing transport of light from the point of incidence to a different
point of emergence becomes apparent and RMSE and SSIM both
worsen. As soon as we switch to a model that accounts for this
subsurface light transport [20], the result becomes better than
the Lambertian model. This is true even without single scat-
tering and assuming that the surface is perfectly smooth. The
directional dipole [19] and our spatially varying roughness from
Sec. B further improve the result. However, the models cannot
fully represent the scattering process. This is probably due to
limiting assumptions such as diffuse emergent light and a lo-
cally flat, convex object. It should be mentioned that the bunny
was printed using greyscale values to reduce staircasing arte-
facts [67]. These staircasing artefacts due to layered printing are
significantly less pronounced for the bunny as compared with
the angel (which was not printed using greyscale values). Nev-
ertheless, the bunny object still exhibits some spatial variation
in its roughness that we have modelled.

Refinement of the model for the aluminium bust (b). Figure 9. We
use the complex index of refraction of aluminium from McPeak
et al. [73] (this is available for download at refractiveindex.info).
Since we have a dark scene with a point light, the appearance
is off without surface roughness (as highlights then disappear).
Adding a microfacet normal distribution was thus essential for
this case, and we found that the GGX distribution [18] provided
a good result. When adding spatially varying roughness based
on the curvature, we found that SSIM would improve for a larger
shininess s at the cost of a poorer RMSE. The SSIM-improved
result is in Figure 1. The RMSE probably suffers from a slight
misplacement of the highlight peak in the forehead of the bust.
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RMSE: 0.1152 RMSE: 0.1237 RMSE: 0.1136 RMSE: 0.1127 RMSE: 0.1124
SSIM: 0.8108 SSIM: 0.7931 SSIM: 0.8145 SSIM: 0.8177 SSIM: 0.8180
Lambertian interfaced standard SSS directional SSS SV roughness

Fig. 7. Renderings (top) and gamma-corrected absolute difference images (bottom, γ = 2.2) to test appearance models for the rough
translucent bunny. The interfaced model adds a rough surface with a GGX microfacet normal distribution [18, 59, 60]. The standard
subsurface scattering (SSS) model is the standard dipole including path traced single scattering and a rough surface [20, 63]. The
directional SSS model uses the directional dipole [19] and incorporates a rough surface (Sec. A). The model with spatially varying
(SV) roughness uses Eq. (14). Further comparison of the input image with the end result is in Figure 1. The not quite so flat paper
worsens both RMSE and SSIM by approximately 0.05.

Refinement of the model for the rough transparent angel (c). Fig-
ure 8. Using the convention that surface normals always point
outwards, absorption is easily included by applying Bouguer’s
law of exponential attenuation to all rays that hit the surface
from the inside. Accounting for absorption and a rough inter-
face is highly important when modelling the appearance of the
angel. Apart from this, the print layers are visually obvious,
especially in highlights. We, therefore, tried to model the layers
by calculating a layer index based on the point of intersection
and using an increased roughness for every second layer. This
represents the rougher layer edges more explicitly. Visually, we
find this layered result more convincing and it also has lower
RMSE, but SSIM disagrees. We tried adding single scattering to
the material, but this only seemed to worsen RMSE and SSIM.
Thus, it seems that the remaining deviations from the reference
are mostly due to geometric print artefacts and inaccuracies in
the spatial variation of the surface roughness.

7. DISCUSSION

While we use a pinhole camera model, one should note that our
method can also work for more advanced camera models as
we can apply the necessary transformations to the object edges
before computing the silhouette. Extending to area lights is
however challenging and left for future work.

A disadvantage of using silhouettes is their simplicity. In
some cases, they describe the features of an object inadequately,
which can cause ambiguities in the pose estimation. An example
of this could be a bowl with contents, where the silhouette only
contains information enough to pose estimate the bowl. To have
more information, some methods [28] also use features on the
object itself. In cases where the segmentation has inaccuracies
and our pose may have small errors, our method is still useful
for obtaining a good initial guess that can be refined by other
methods (such as differentiable rendering).

8. CONCLUSION

We presented a practical method for aligning photographs with
rendered images. Our method is based on silhouette matching

and estimates both object pose and the position of a point-like
light source. If multiple images have been captured from differ-
ent views and/or with light sources in different positions, our
method can include this added information in the pose estima-
tion. As opposed to differentiable rendering techniques, our
method works not only in pixel space but in the entire image
plane. This means that we can estimate a pose from a very poor
initial guess. Thus we find our work a practical enabling tech-
nique for inverse rendering that could be based on differentiable
rendering.

Given an alignment, we proposed a procedure for compos-
ing an appearance model suitable for the photographed object.
The concept is to start from a simplistic model and gradually
increase the complexity of appearance models guided by differ-
ence images and quantitative metrics such as RMSE and SSIM.
As a consequence of this approach, we presented extensions of
existing models providing improved photorealism. One exten-
sion was the combination of a rough surface with directional
subsurface scattering. We believe that practical alignment of
photographs with renderings is an important step in furthering
the predictive abilities of appearance models.
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Surface Reconstruction
from Structured Light

Images using Differentiable
Rendering

This contribution is a work in progress that we expect to revise further soon.



Surface Reconstruction from Structured Light Images using
Differentiable Rendering

Janus N. Jensen1* · Morten Hannemose1* · J. Andreas Bærentzen1 ·
Jakob Wilm2 · Jeppe R. Frisvad1 · Anders B. Dahl1

Fig. 1: Our method reconstructing the Stanford Bunny starting from a sphere. From left to right: Initial mesh

(sphere), after 50 iterations, after 750 iterations, and the converged result. The final reconstruction has 13 780
vertices and a ∆V error of 0.30%, when compared to the ground truth. The reconstruction was done for k = 1.

Abstract A triangle mesh is a good model to digitally
represent a surface because it gives a closed object inter-

face. Most surface scanning methods such as structured
light scanning are, however, based on computing a point
cloud. To obtain a triangle surface mesh then requires

a second meshing step. Here, we investigate the effect
of a one-step approach, where we compute the trian-
gle mesh directly from structured light images. To do
so, we propose a new method based on minimizing the

least-squares error between real images and renderings
of a triangle mesh, where the positions of the vertices
of the mesh are the parameters of the minimization

problem. Our experiments show that computing a tri-
angle mesh in one step using our method has several
advantages over the two-step approach with an inter-

mediate point cloud. Our method can produce accurate
reconstructions when initializing the optimization from
a simple sphere. We also show that our method is es-
pecially good at reconstructing sharp edges, that it is

robust with respect to image noise, and that it can im-
prove the output from other reconstruction algorithms
when we use these as initialization.

Keywords 3D surface reconstruction, structured
light, differentiable rendering.

1 DTU Compute, Technical University of Denmark, Lyngby,
Denmark
E-mail: jnje@dtu.dk
2 SDU Robotics, University of Southern Denmark, Odense,
Denmark
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1 Introduction

Structured light 3D scanning of an object can be used
to produce a point cloud from which we can reconstruct

a triangle mesh. This mesh is then a digital represen-
tation of the surface of the scanned object. This has
many applications including cultural heritage preserva-

tion and industrial quality control. For most applica-
tions, the accuracy of a recovered surface of the recon-
struction is of great import. Typically, producing point
clouds from phase shifting structured light images is

rather cumbersome. It involves determining the phases,
unwrapping these, re-sampling the unwrapped phases
due to image distortion and rectification, finding point

correspondences, and finally triangulating these. After-
wards, the point clouds from different sub-scans need
to be merged before the final reconstruction of a trian-

gle mesh. During this process of producing point clouds
and subsequently a triangle mesh, the image noise prop-
agates non-linearly to affect vertex positions in the re-
constructed triangle mesh. We, therefore, propose to

skip the point cloud, and the process of creating it, and
instead reconstruct surfaces directly from image inten-
sities to investigate how that affects the accuracy of

the reconstructions. Using vertex positions as model pa-
rameters, we minimize the least-squares error between
rendered and recorded images to obtain a triangle mesh
directly.

Our method has three major implications: (1) ex-

plicit point triangulation from image correspondences
is no longer needed; (2) we understand how noise in the
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(a) A noisy input images. (b) Poisson reconstruction with
7 064 vertices. ∆V = 1.28%

(c) Our method with 6 038 ver-
tices. ∆V = 0.08%

(d) Crop of noisy image. (e) Close-up of Poisson recon-
struction.

(f) Close-up of our method.

Fig. 2: Our method is able to reconstruct meshes with sharp edges from very noisy images (k = 103). Our method
has a lower error (∆V ) than a Screened Poisson reconstruction with a comparable number of vertices (spatial

octree depth 7).

image data affects the final reconstruction; (3) the re-
construction is done for all image data simultaneously.

Similar approaches have been used for multi-view
passive stereo but to the best of our knowledge not

for structured light reconstructions. In passive stereo,
dense correspondences can be established, usually yield-
ing much higher accuracy in weakly textured areas.

Why are we solving this? In many reconstruction meth-
ods, the raw image data is not considered during the re-
construction. The reconstruction is instead done using
unstructured point clouds that have been constructed

from the image data. This means that any noise from
the imaging process and from the point sampling pro-
cess is not modeled in the reconstruction and may be

propagated through to the end result.

2 Related work

Suppose we know the configuration of light and camera
in a vision setup and the reflectance properties of the

imaged object. Obtaining the shape of the object based
on the observed shading of the object in an acquired

image is then referred to as the shape-from-shading

problem (Horn 1970). The original shape-from-shading
method by Horn (1970, 1975) used so-called character-
istic curves to describe the observed shape. The method

was based on illumination from point-like sources and
the shading would then only allow estimation of the
gradient along a path. This was the reason for using a

collection of curves to describe the object shape.

Curves are inconvenient in the sense that they re-
quire stitching to become a full surface description. One

way to fit a mesh instead of curves is to use an op-
timization technique that does not require gradients.
This has been done for a rectangular mesh using sim-
ulated annealing and simplex search (Rockwood and

Winget 1997). Gradients are however preferable to ease
the optimization problem. For triangular meshes, an
approach has been developed based on image gradi-

ents (Zhang and Seitz 2000). Unfortunately, the shape
can be hard to recover from image gradients due to
color variance caused by normal variations in the sur-

face. To keep gradient-based optimization while having
a method more robust to surface reflectance deviating
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from an assumption of a specific shading model, we use
structured light with a differentiable pattern.

Combination of shape from shading with a struc-
tured light approach like phase shifting improves the
performance of the shape estimation (Inagaki et al.
2001; Naganuma et al. 2003), and enables simultane-

ous acquisition of shape and object color (diffuse re-
flectance) (Naganuma et al. 2004). We do not include
estimation of spatially varying reflectance in this study,

but we note that this is an option. Only a height field
was reconstructed in this previous work. We take the
concept one step further and reconstruct a closed 3D

object as in the work of Zhang and Seitz (2000) but
also exploiting structured light.

The mesh-based reconstruction method of Zhang
and Seitz (2000) was improved by Isidoro and Sclaroff
(2002, 2003) through creation of a better initial mesh
and by Yu et al. (2004, 2007) through use of a more

physically based reflectance model. Another option is
to use multiview stereo to acquire a good initial guess
and then refine the mesh using a shape-from-shading

approach Wu et al. (2011). Our method can be used in
a similar way with the innovation of using structured
light to improve the robustness of the mesh refinement.

Use of structured light has become a strong tech-
nique for point-based 3D reconstruction (Ha et al. 2015)
but has to the best of our knowledge not previously

been tested in mesh-based 3D reconstruction. We do
this to have the benefits of a mesh-based technique.
An important benefit is that the connectivity between

points (vertices) is retained throughout the geometric
refinement process.

The recent differentiable renderer from Loubet et al.
(2019) uses ray tracing and reverse mode automatic dif-
ferentiation. Use of such a framework for mesh refine-

ment is an option. Every rendering is however quite
computationally demanding, so the optimization would
have a significant run time. Liu et al. (2019) introduced
the soft rasterizer, which is a faster differentiable ren-

derer based on a smoothed version of rasterization. This
has shown promising results in other mesh reconstruc-
tion tasks, but to make it able to render the structured

light of a projector is nontrivial.

3 Method

Our method fits a surface to a set of structured light

images by minimizing the squared differences between
rendered images and real images. We parameterize the
object surface by a triangular mesh, and the parame-

ters we optimize are thus the vertex positions v. The
real images are captured with structured light phase

shifting from multiple camera-projector positions. We

denote these images Ic,p, where c ∈ C is the index of
the camera-projector pair and p ∈ P is the index of
the projected pattern. We render images Ĩc,p(v) of our

parameterized surface from the same camera-projector
positions and find the optimal vertex positions by solv-
ing the following minimization problem

argmin
v
L(v) = argmin

v

∑

c∈C

∑

p∈P

∥∥∥Ic,p − Ĩc,p(v)
∥∥∥
2

F
, (1)

where ‖·‖F is the Frobenius norm, i.e. we minimize the
sum of squared differences over all pixels for all patterns
and all camera-projector pairs.

We generate our structured light images by project-
ing phase shifted sinusoidal patterns of the form

sin (2πnpx+ φp) , (2)

where x is the x-coordinate of the projector normalized
to [0, 1], np is the number of periods in the pattern,
and φp is a phase shift. With structured light images,
such as phase shifted images made from Equation 2,

the goal is usually to find the projectors x-coordinate,
which subsequently can be used for triangulation.

Our method is not specific to phase shifting pat-
terns, however we use differentiable patterns to make
the minimization problem tractable.

3.1 Rendering images

To solve the minimization problem in Equation 1 we

need to render the images Ĩc,p(v) in each iteration. We
want to adequately reproduce the structured light im-
ages that would have been obtained if our current pa-

rameterized surface was a real object. We achieve this
by simulating the structured light process as seen from
the viewpoint of the camera. We render the images us-
ing the formula

Ĩc,p(v) = Ac sin
(

2πnpX̃c(v) + φp

)
+ Bc. (3)

Here, sin(·) is elementwise application of the sine
function, np is the number of periods as in Equation 2,

φp is the phase shift for the pth pattern, and X̃c(v)

contains the x-coordinates of the projector in the [0, 1]
range for each pixel. We use the x-coordinate of the pro-
jector as it is parallel to the offset between the camera

and projector. The matrices Ac and Bc are amplitudes
and biases that are estimated from the ground truth
images by fitting sinusoids at each pixel location. We
find the elements of X̃c(v) by tracing a ray from the

camera through the center of each pixel and projecting
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the point where it intersects the surface back to the pro-
jector. As we model the projector as a pinhole camera,
the point is projected to the projector as follows



q1
q2
q3


 = P

[
r
1

]
=
[
p1 p2 p3 p4

] [r
1

]
, (4)

where P is the projection matrix of the projector, pi is

the ith column of P, and r is the 3D point where the
ray intersects the triangle face. The i, jth element of X̃c

is then given by

X̃i,j
c =

q1
q3
. (5)

If the ray does not intersect the surface, we treat the
pixel as background and set X̃i,j

c (v) := Xi,j
c , such that

the corresponding term in the loss L(v) will be zero.

The amplitudes Ac are a measure of how much of

the projector light is reflected into the camera, and
Bc − 1

2Ac is a measure of the amount ambient light.
We estimate these to have the renderings better resem-
ble the true images. However, we only need to estimate

these once for each viewpoint, and we are able to use
these estimates repeatedly in each iteration of the op-
timization.

3.2 Optimizing the surface

We use gradient descent to solve the optimization prob-
lem in Equation 1. In order to do this, we need the

gradient of L(v), which in turn depends on the gradi-
ent of the elements in X̃c(v). Recall that each of these
elements is computed by tracing a single ray from the

camera to the surface of the object. The gradient of X̃i,j
c

will therefore only have contributions from the vertices
spanning the triangle face that intersects the ray. We
can compute the derivative for one of these three ver-

tices (pa) as follows

∂X̃i,j
c

∂pa
=

(
p1 − X̃i,j

c p3

q3
· d
)
λan

d · n , (6)

where d is the ray direction, n is the normal of the face,
and λa is the barycentric coordinate corresponding to

pa. The equations for the remaining two vertices, pb

and pc, use λb and λc but are otherwise identical. For
a derivation of Equation 6, see Appendix A.

As mentioned we use gradient descent to update the
vertex positions, that is

vi+1 = vi − αi∇L(vi), (7)

where vi, and vi+1 are the vertex positions in the ith

and (i+1)th iterations respectively. To choose the step-
length αi we use a simple backtracking line-search strat-
egy to choose

αi :=
1

2n
α, (8)

where α is a fixed constant and n is largest integer such
that L(vi+1) < L(vi) when doing the update.

3.3 Initializing the optimization

Up until this point, we have described how the itera-

tive part of the optimization problem works, but this
is only one half of the problem. A good initial guess
is extremely important to ensure convergence. In the
next two sections, we will introduce two possible ways

to obtain an initial guess for the minimization problem
in Equation 1.

3.3.1 Using other reconstruction methods

One way of getting a good initial guess is using a recon-
struction found via another reconstruction method. In
this way, our method can be seen as a post-processing

step which tries to adjust the reconstruction to better fit
to the original image data. In some of our experiments
we have used Screened Poisson Reconstructions (Kazh-

dan and Hoppe 2013) at various depths as initialization.
When using Poisson reconstructions, we experience it
often being beneficial to remesh the mesh before start-

ing the optimization.

3.3.2 Using simple shape

Another way of getting a good initial guess is by solving

a related, but simpler, minimization problem, and use
the result as initialization for the minimization problem
in Equation 1. If we denote the x-coordinates of the

projector from the ground truth images by Xc, we can
solve the simpler problem given by

argmin
v

∑

c∈C

∥∥∥Xc − X̃c(v)
∥∥∥
2

F
, (9)

and use the solution as initialization of our problem in

Equation 1. The method used to recover Xc depends on
the patterns displayed, but for two sets of phase shifted
patterns the heterodyne principle can be used (Reich
et al. 1997).

To make the initial problem simpler, we start with
a mesh that has few vertices and gradually increase the

number of vertices by remeshing. This enables us to use
a simple shape, e.g. a sphere as our initial mesh.
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3.3.3 Remeshing

As described in Sections 3.3.1 and 3.3.2 we use a remesh-
ing algorithm. The algorithm we use is adapted from
the Python geometry processing library Pymesh (Zhou

2020). The outline of the algorithm is shown in algo-
rithm 1.

Algorithm 1: Remeshing algorithm adapted
from Zhou (2020)

Input: Mesh, target edge length `
Result: Mesh
Remove degenerate triangles
Split edges longer than `
while mesh is changed do

Collapse edges shorter than `
Split obtuse triangles (angle bigger than 150◦)

Remove self-intersections
Remove duplicate faces
Replace mesh with outer hull of mesh
Remove duplicated vertices
Split obtuse triangles (angle bigger than 179◦)
Remove isolated vertices

4 Experiments

To demonstrate the usefulness of our method, we have

carried out a few experiments, that we will briefly in-
troduce. First, we show that our method is able to re-
construct an object starting from a sphere, which is in

Figure 1. Secondly, we reconstruct 3 different objects
at multiple levels of noise, which we show in Figure 3.
Finally, we compare against a Poisson reconstruction at
two levels of noise, and show that our method is able

to produce sharp edges.

To understand how we did these experiments, we
will go through how we generate our ground truth im-
ages.

4.1 Generating ground truth images

We did all our experiments using synthetic ground truth

images, to have access to the ground truth shape of the
mesh to compare against. Our ground truth images are
made by projecting two sets of phase shifted patterns

with 15 and 16 periods respectively, with 16 shifts of
the first pattern and 8 shifts of the second, such that

np =

{
15 p ∈ [1, 2, . . . , 16]

16 p ∈ [17, 18, . . . , 24]
(10)

and

φp =

{
2πp 1

16 p ∈ [1, 2, . . . , 16]

2π(p− 16) 1
8 p ∈ [17, 18, . . . , 24].

(11)

4.1.1 Rendering

The ground truth images are rendered using ray-tracing

with 100 samples per pixel for anti-aliasing, and we use
the Lambertian reflectance model to describe the sur-
face of the mesh.

4.1.2 Noise

As these ground truth images are noise-free, we add
noise to make the images more realistic. For this, we
model the noise of a pixel with intensity x by a Gaussian

distribution with mean x and variance

σ2 = σ2
r + xσ2

p, (12)

where the first term σr describes the signal-independent

sensor read-out noise and the second term xσp describes
the signal-dependent shot noise. We choose σr and σp
by using the noise levels from a baseline camera (Adobe

Systems Incorporated 2019). Our noise levels are then
defined as multiples of this baseline noise level, con-
trolled by k as follows

σ2(k) = k(4.5 · 10−7 + x · 2 · 10−5), (13)

such that k = 1 gives the noise levels of a baseline
camera for x ∈ [0; 1]. If a pixel gets a value outside the

[0; 1] range after adding noise, we clip it to be inside
the range. Examples of images for different values of k
can be seen in Figure 3.

4.2 Quantitative evaluation

We quantitatively evaluate the performance of our method
by measuring the symmetric volume difference between
the ground truth and a reconstruction as a percentage
of the volume of the ground truth. We refer to this as

∆V and compute it as

∆V =

∣∣∣
(
S \ S̃

)
∪
(
S̃ \ S

)∣∣∣
|S| , (14)

where S and S̃ are the ground truth and reconstruction
considered as solids, and | · | is the volume of a solid.
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Fig. 3: Crop of image shown with varying levels of noise.
From top to bottom: k = 1, k = 102, k = 103.

Bunny Box Vase

Reconstruction 3 350 6 000 2 300
Ground truth 34 817 4 619 44 852

Table 1: Approximate number of vertices of each of the
objects in Figure 5.

4.3 Experiment details

We evaluate our method on three different shapes. The
Stanford Bunny (Turk 2000), a combination of a cylin-

der and a box with various truncated corners, and a
dandelion vase (Steve 2013). These shapes are on the
bottom row of Figure 3. When starting from a simple

shape as described in subsubsection 3.3.2, we have used
the same sphere across all of our experiments. When
optimizing the simpler problem in Equation 9, we have
done remeshing every 25th iteration. At each remesh-

ing step we decrease the target edge length which yields
meshes with finer and finer resolution. For the ith remesh-
ing step we set the target to be

`i = 0.99i · 0.025 · dBB , (15)

where dBB is the largest diagonal of the bounding box
of the current mesh. To be able to solve the problem in

Equation 9 we have estimated Xc using the heterodyne
principle (Reich et al. 1997). In all of our experiments,
we have used 60 camera-projector positions organized

in 3 circles to mimic a structured light scanner with
the object placed on a turntable, with the object being
rotated three times. One of these circles are visualized

in Figure 4. The camera resolution for all renderings
are 1920× 1080 pixels.

Fig. 4: Visualization of one of the circles from our

camera-projector setup. In all experiments we use 3
circles with 20 cameras each. Red objects indicate a
camera and blue indicates a projector. The dotted lines

show which cameras and projectors belong together.

In Figure 1, we show how our method is able to
reconstruct the Stanford Bunny starting from a sphere.
After finishing the optimization based on Equation 9,

we remesh the result by halving the target edge length
` from the last remeshing step, to get a mesh with even
finer resolution. The two in-progress images shown, are

during the initial optimization directly on Xc. The final
reconstruction contains many of the fine details of the
true bunny (Figure 5j).

To examine how our method is affected by noise, we
reconstruct all three objects starting from a sphere with
varying levels of noise (k ∈ [1, 102, 103]), which we show

in Figure 3. We see that our method largely unaffected
by noise, but is still able to reconstruct the shape. The
details lacking in our reconstructions are mostly due to
us not having made the mesh fine enough to represent

these details, which can also be seen in Table 1.

Finally, we compare against Screened Poisson re-
construction in Figure 3, for multiple depths of the re-

construction. It can be seen that our method is able to
get a lower error than the Poisson reconstruction. The
meshes from some of these data points are shown in

Figure 2.

5 Discussion

Our method has implicit assumptions about the re-
flectance of the object that is necessary for structured

light. These are that there are no phenomena such as
subsurface scattering, or inter-reflections of light on the
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(a) k = 1, ∆V = 0.81% (b) k = 1, ∆V = 0.060% (c) k = 1, ∆V = 0.41%

(d) k = 102, ∆V = 0.83% (e) k = 102, ∆V = 0.074% (f) k = 102, ∆V = 0.47%

(g) k = 103, ∆V = 0.60% (h) k = 103, ∆V = 0.076% (i) k = 103, ∆V = 1.6%

(j) Ground truth (k) Ground truth (l) Ground truth

Fig. 5: Reconstructions made by our method on three different objects, for increasing levels of noise k.
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103 104 105
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10−2

10−1

Number of vertices

∆
V

Poisson

Cleaned Poisson

Opt. from Poisson

Opt. from sphere

(a) k = 1

102 103 104

10−3

10−2

10−1

Number of vertices

∆
V

(b) k = 103

Fig. 6: Comparison showing ∆V as a function of the number of vertices in the mesh for reconstructions of the
box with cylinder. Cleaned Poisson is the Poisson reconstruction, where only the connected component with the
largest volume has been kept. Opt. from Poisson and sphere is our method using the initial guesses described in

subsection 3.3. The Poisson reconstruction was done for spatial octree depths of 4 to 8.

object. This is because our method is also relying on
the property that the projector light observed in a sin-
gle pixel is only coming from a single x-coordinate of
the projector, which is not true when these effects are

present.

Although we have used the Lambertian reflectance
model to render our synthetic data, we do not expect
this to be a limitation of our method. It does not rely

on the assumption of Lambertian reflectance due to the
use of structured light, and therefore does not rely on
estimating a texture map of the object, neither implic-
itly nor explicitly.

In our experiments, we have had the advantage of

knowing the camera and projector positions exactly,
which is not the case when working with real data. This
can however be remedied relatively easily, by including

the positions of these as parameters in the optimiza-
tion problem. Additionally, we do not need to purely
rely on our estimates of Ac, Bc, as these can also be
optimized for. We do however expect both Ac, Bc, and

the camera-projector positions to be known quite accu-
rately, and would suggest letting them be part of the
optimization only once the original optimization prob-

lem has converged.

In order to solve the optimization problem, we com-
pute the derivative of our loss function, which involves
the derivative of our rendering. This is potentially prob-

lematic as our rendering is not differentiable at points
where non-neighbouring faces of the mesh are bordering

each other in the image space. This could e.g. be the ear

and body of the Stanford Bunny. However, in practice
this turns out not to be a problem in our optimization.
We suspect this is due to the fact that this is something

that happens in a relatively small percentage of pixels
each iteration.

The choice of using a mesh as the surface represen-
tation to optimize has some advantages. It is very effi-

cient to compute the gradient of our loss function for a
mesh, as each pixel only influences a constant number
of elements in the gradient, which makes it suitable for
parallel implementation on a GPU.

A disadvantage of our method is that it is not able to

handle topology changes. In practice this means, that
the initial mesh must have the same topology as the
true object.

6 Conclusion

Our primary contribution is a novel model for comput-
ing a surface mesh directly from structured light images

without the need for an intermediate point cloud. With
this model, we have shown that the direct computation
of a triangle mesh gives higher accuracy and is par-

ticularly good at reconstructing sharp features such as
corners and edges, which are smoothed out using the
two-step Screened Poisson reconstruction that we com-
pare to. Further, we have obtained very high robustness

to noise by optimizing the vertex positions directly from
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the images and and not reconstructed from a computed
point cloud, where intensity information is lost. Finally,
our approach completely avoids partial scans that must
subsequently be aligned, because the optimization is

done for all images at once. This demonstrates the ad-
vantage of directly reconstructing a surface from struc-
tured light images using differentiable rendering.
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A Derivation of Equation 6

In this appendix, we derive the gradients of the elements of
X̃c(v) wrt. the vertices v. Let X̃i,j

c be the i, jth element of

X̃c(v). This is found by tracing a ray through the center of
the i, jth pixel in the camera until it intersects the surface at
a point r, that is

r = o + td, (16)

for some t, where o is the position of the camera and d is
the direction of the ray. Modelling the projector as a pinhole
camera, this point is projected back into the projector by



q1
q2
q3


 =



P1,1 P1,2 P1,3 P1,4

P2,1 P2,2 P2,3 P2,4

P3,1 P3,2 P3,3 P3,4



[
r
1

]
. (17)

If we define p1 =
[
P1,1 P1,2 P1,3

]
and p3 =

[
P3,1 P3,2 P3,3

]

then

X̃i,j
c =

q1

q3
=

p1 · r + P1,4

p3 · r + P3,4
. (18)

The point r intersect a triangle with vertices pa,pb, and pc.
The normal of this triangle can be computed by

n = (pc − pb) × (pa − pc) . (19)

Using the normal we can write t as

t =
(pb − o) · n

d · n . (20)

Using the chain-rule we have that

∂X̃i,j
c

∂pa
=
∂X̃i,j

c

∂t

∂t

∂pa
(21)

=

(
3∑

i=1

∂X̃i,j
c

∂pi

∂pi

∂t

)
∂t

∂pa
(22)

=

(
∂X̃i,j

c

∂r
· d
)

∂t

∂pa
. (23)

Here

∂X̃i,j
c

∂r
=

∂q1

∂r
q3 − q1

∂q3

∂r

q32
(24)

=
∂q1

∂r
− X̃i,j

c
∂q3

∂r

q3
(25)

=
p1 − X̃i,j

c p3

q3
, (26)

The last missing term in Equation 23 is

∂t

∂pa
=

∂

∂pa

(pb − o) · n
d · n (27)

=

∂
∂pa

[(pb − o) · n] (d · n) − [(pb − o) · n] ∂d·n
∂pa

(d · n)2
(28)

=

∂n
∂pa

>
(pb − o) − t ∂n

∂pa

>
d

d · n (29)

=

∂n
∂pa

>
(pb − o− td)

d · n (30)

=

∂n
∂pa

>
(pb − r)

d · n , (31)

with

∂n

∂pa
=

∂

∂pa
(pc − pb) × (pa − pc) (32)

=
∂

∂pa
(pc − pb) × pa (33)

=
∂

∂pa
[pc − pb]× pa (34)

= [pc − pb]× , (35)

where we utilise that a cross-product a×b can be written as a
matrix-vector product [a]× b using a skew-symmetric matrix.
Inserting into Equation 31 we get

∂t

∂pa
=

(pb − r) × (pc − pb)

d · n . (36)

If we write r using barycentric coordinates, r = λapa+λbpb+
λcpc with λa + λb + λc = 1, then Equation 36 reduces to

∂t

∂pa
=

(pb − (λapa + λbpb + λcpc)) × (pc − pb)

d · n

=
(λa(pc − pa) + (1 − λb)(pb − pc)) × (pc − pb)

d · n
=
λa(pc − pa) × (pc − pb)

d · n
=
λan

d · n . (37)

Putting it all together we get that

∂X̃i,j
c

∂pa
=

(
p1 − X̃i,j

c p3

q3
· d
)
λan

d · n . (38)

The derivatives wrt. pb, and pc can be found with similar
derivations.
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