
M.Sc. Thesis
Master of Science in Engineering

Automatic Localization of Impact Position
in Golf Swing using Computer Vision

Janus Nørtoft Jensen
Morten Hannemose

Kgs. Lyngby 2016

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Abstract
Millions of people worldwide play golf. In order to improve they use key values to
evaluate their game.
In this thesis, we have analyzed videos of golf strokes and studied the feasibility of
detecting the impact position between club and ball without the use of markers. We
have estimated other key parameters such as the initial ball position, impact time
and club trajectory.
Data for this thesis was obtained by recording videos of golf strokes with an iPhone
and data from a Doppler radar from TrackMan A/S.
The results show that it is possible to estimate the impact position with satisfactory
accuracy. Furthermore, we have managed to locate the initial ball position with high
precision, and estimated the time of impact with sub-frame accuracy.

ii

Preface
This thesis was prepared at the department of Applied Mathematics and Computer
Science at the Technical University of Denmark (DTU) under the supervision of
Associate Professor Henrik Aanæs and Associate Professor Anders Bjorholm Dahl
in fulࢸllment of the requirements for acquiring an MSc Eng degree in Mathematical
Modelling and Computation. The project was done in cooperation with TrackMan
A/S with CTO Fredrik Tuxen and Benjamin Braithwaite as the company supervisors.
The scope of the project was 32.5 ECTS points and it was carried out from March to
August 2016.

Kgs. Lyngby, August 13, 2016

Janus Nfirtoft Jensen Morten Hannemose

iv

Acknowledgments
We would like to thank our advisors for valuable advice and feedback throughout the
project period.
We are grateful for the oࢺce and food that was generously provided to us by TrackMan
A/S. This has made the project a delight to work on.
A great thanks goes to Ben, our oࢺce mate and advisor, for a pleasurable working
environment and great conversations. Sorry for our poor singing voices that you had
to endure on a daily basis.
We also wish to acknowledge the two golf players, Mads and Matt, for their beautiful
shots in our datasets.
Personally I, Morten, would like to thank Janus for helping me with various daily
necessities in the rstࢸ few months of the project due to my temporarily reduced
physical capabilities that come with a fractured hip.
We would also like to thank Morten’s mother, Annette, for lending her car to us
during the entire project period.
Finally, we would like to thank you, the reader, for taking the time to read this thesis.

vi

Contents
Abstrflct i

Prefflce iii

Acknowledgments v

Contents vii

List of flbbrevifltions ix

1 Introduction 1
1.1 Problem statement . 1

2 Theory 3
2.1 Related work . 3
2.2 Notation . 3
2.3 Golf terminology . 4
2.4 Canny edge detector . 7
2.5 Hough transform . 7
2.6 RANdom SAmple Consensus (RANSAC) 8
2.7 Markov random eldsࢸ (MRFs) . 11
2.8 Gaussian mixture model (GMM) . 14
2.9 Dynamic programming . 14
2.10 Geometrical least squares for straight lines 15
2.11 Camera model . 17

3 Dfltfl 19
3.1 Datasets . 19
3.2 Annotations . 21

4 Methods 23
4.1 Preliminaries . 24
4.2 Initial ball location . 29
4.3 Computing impact time . 33
4.4 Anchor point detection . 38
4.5 Anchor point interpolation . 48

viii Contents

4.6 Pose estimation at the time of impact 50
4.7 Estimating impact point . 57

5 Results 59
5.1 Camera calibration . 59
5.2 Ball position . 59
5.3 Impact time . 61
5.4 Anchor point detection . 65
5.5 Anchor point interpolation . 66
5.6 Anchor point vectors . 70
5.7 Impact position . 75

6 Discussion 77
6.1 Project-wide considerations . 77
6.2 Camera calibration . 78
6.3 Ball position . 79
6.4 Impact time . 80
6.5 Anchor point detection . 82
6.6 Anchor point interpolation . 82
6.7 Anchor point vectors . 83
6.8 Impact position . 84

7 Conclusion 85
7.1 Recommendations for TrackMan A/S 85

A Appendix A 87
A.1 Geometrical distance to second degree polynomial 87
A.2 Projected shaft angle . 87

B Appendix B 89
B.1 Anchor point clouds . 89

Bibliogrflphy 95

List of abbreviations
DS1 Dataset 1

DS2 Dataset 2

DS2n Dataset 2 normal lens

DS2z Dataset 2 zoom lens

FPS Frames per second

GMM Gaussian mixture model

GRF Gibbs random eldࢸ

MAP Maximum a posteriori

MRF Markov random eldࢸ

PCA Principal component analysis

PDF Probability density function

PnP Perspective-n-Point

RANSAC RANdom SAmple Consensus

RMSE Root mean square error

ROI Region of interest

SVD Singular value decomposition

x

CHAPTER 1
Introduction

Golf is a sport enjoyed by millions of people worldwide. Players range from pro-
fessionals to people whose primary or sole competitor is themselves and who play
primarily for fun. What is common for most players is that they are interested in
improving their game. Traditionally trainers have told players how to swing the club
and move their body to achieve better results. Over the last decade, this process has
become more and more data-driven using modern electronic aids. One of the leading
companies within this eldࢸ is TrackMan A/S.
TrackMan A/S is a Danish company specialized in using Doppler radar technology
for various ball sports like golf, baseball, and tennis. Their golf radar tracks the
ball and club trajectories and from these, they are able to derive a various range of
diࢷerent parameters such as club speed, ball speed, shot distance, spin rate etc. Such
numbers are very useful for a golf player trying to improve his game. Some values
they are however not able to obtain precisely using only radar. They are interested in
examining if some of these can be determined with greater precision using computer
vision. It is of special interest to determine where on the club head the ball is hit.
This information is a key factor for a player when determining if they hit the ball
optimally and consistently.

1.1 Problem stfltement
In this thesis, we will use computer vision to analyze videos of golf strokes recorded
with an iPhone combined with Doppler radar data.
Speciࢸcally, we will study the feasibility of predicting the impact location of the ball
on a club head in a stroke without the use of markers. In order to do this, we will
also need to estimate other key values such as the initial ball position, shaft angles,
and club head trajectory.
We aim to compute the impact time between the club and ball with sub-frame ac-
curacy. This can be used both in the prediction of the impact location and for
synchronizing the video and radar data.

2

CHAPTER 2
Theory

2.1 Relflted work
Currently, there exist a few commercial products that are able to detect the impact
position in golf. They are all based on a combination of high-speed cameras and
markers. Some of these products are the Foresight HMT (Foresight 2016), Qualisys
(Qualisys 2016) and Gears Golf (Gears 2016).

We’ve been unable to ndࢸ any previously published literature on detecting the impact
position. There exists very little published literature on detecting a golf club in videos.

Gehrig et al. (2003) detect the golf club in videos by detecting motion in frames and
detecting the straight lines in the motion. They tࢸ a 6th-degree polynomial robustly
to the endpoints of these lines using RANSAC. The resulting polynomial constitutes
a global model of the golf swing. Their work was done on a dataset of videos recorded
orthogonally to the shooting direction.

Woodward and Delmas (2005) designed a system using cheap web cameras with one
camera in front and one to the side of a putter hitting a golf ball. Colored stickers
are attached to the putter and a colored ball is used. These elements are detected in
both cameras and triangulated which yields 3-D positions of the ball and the face of
the putter.

Some work on modeling a golf swing has been done. It has shown that the double
pendulum is a good model of the entire swing (Cochran and Stobbs 1968; Jorgensen
1999). This is because the arms act as the upper pendulum and the golf club acts
as the lower pendulum. If only the lower part of the swing is considered, a single
pendulum or circle is also a reasonable model (Tuxen 2014).

2.2 Notfltion
This section brieࢹy outlines notation used in this thesis.

Matrices (and images) are denoted by bold uppercase letters e.g. M, and vectors are
denoted by bold lowercase letters, e.g. v.
When we have a point pv in homogeneous coordinates and refer to pv,x and pv,y we
mean the rstࢸ coordinate divided by the scale and the second coordinate divided by

4 2 Theory

the scale, i.e.

pv =



s · pv,x
s · pv,y
s


 .

The matrices Rx(θ), Ry(θ) and Rz(θ) denote right-handed rotations around the x,y
and z-axis respectively, i.e.

Rx(θ) =



1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


 ,

Ry(θ) =




cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)


 ,

Rz(θ) =



cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 .

Whenever we apply functions like max and median on matrices, they are applied as
pixel-wise operations. E.g. if A = (Aij) and B = (Bij) are two matrices then

C = max(A,B)⇒ Cij = max(Aij , Bij).

The Hadamard product or element-wise product, is denoted by ◦, i.e.

C = A ◦B⇒ Cij = AijBij .

Throughout the thesis we use a right-handed coordinate system where the x-axis
is positive to the right, the y-axis is positive downwards and the z-axis is positive
outwards in the depth direction.

2.3 Golf terminology
In this section, we will brieࢹy outline some golf terminology which is used in the
thesis.

Golf clubs
A golf club consists of a shaft and a head and is made of various materials. The part
of the club the furthest away from the shaft is sometimes called the toe, and the part
closest to the shaft is called the heel. Golf clubs are divided into diࢷerent types, and
a golfer usually has a wide assortment of these diࢷerent types. Our datasets contain
strokes with the following types:

2.3 Golf terminology 5

Drivers have big hollowed out heads, rounded faces, and very light shafts, and pro-
duce the longest ball distances.

Irons have solid metal heads and atࢹ angled club faces which allow for diࢷerent ball
.ightsࢹ They have shorter ball distances compared to drivers.

Wedges also have solid metal heads and even atterࢹ club faces than irons. They
produce short and high ball .ightsࢹ

Stfltic club flngles
The shape of a golf club is very important in determining its properties. A club is
manufactured with a static lie angle θlie,s and a static loft angle θloft,s. The static lie
angle is the angle between the shaft and the ground line when the lines on the club
face are parallel with the ground line as illustrated in Figure 2.1(a). The static loft
angle is the angle between the hitting surface and the shaft. This angle is shown in
Figure 2.1(b).

θ
lie;s

(a) Static lie angle θlie,s.

θ
loft;s

(b) Static loft
angle θloft,s.

Figure 2.1: Illustration of how the static lie and loft angles are deࢸned.

Dynflmic club flngles
The pose of the golf club at impact time is essential for a golf stroke. This pose is
determined by the dynamic lie angle θlie,d, the dynamic loft angle θloft,d and the
dynamic face angle θface,d. The dynamic lie angle is the angle between the lines
on the club face and horizontal at impact. The dynamic loft is the angle between
the hitting surface and vertical at impact, and the dynamic face angle is the angle
between the hitting surface and the x-axis at impact. All of these are visualized in
Figure 2.2 on the following page.

6 2 Theory

When we refer to the neutral position we mean the position where

θlie,d = 0◦, θface,d = 0◦, θloft,d = θloft,s.

θ
lie;d

(a) Dynamic lie angle.

θ
loft;d

(b) Dynamic loft
angle.

θ
face;d

(c) Dynamic face angle.

Figure 2.2: Deࢸnitions of the dynamic lie, loft and face angles.

Anchor point
We deࢸne a new point on the club: the anchor point. This point is the visual inter-
section of the head with the line going through the middle of the shaft. This point is
shown in Figure 2.3 on the next page. Because it is deࢸned as a visual intersection,
it changes w.r.t. how the club is viewed. We will use this point as our reference point
to measure the impact location.

2.4 Canny edge detector 7

Figure 2.3: The red point is the anchor point of the golf club.

2.4 Cflnny edge detector
The Canny edge detector is a way of detecting edges in an image as the name suggests
(Canny 1986). Let I be the grayscale image that we want to detect edges in. First,
the image gradients are calculated in the x and y-direction. We denote these by Gx

and Gy. The magnitude of the gradient

Gmag =
√
Gx +Gy ,

is used as the edge measure.
Each pixel in Gmag is compared to its neighbors in the direction of the gradient
(Gx,Gy) and (−Gx,−Gy), and only those which are larger than their neighbors are
kept. This process is called non-maximum suppression and ensures that the detected
edges are thin.
The resulting image E is then thresholded with two diࢷerent thresholds τ1 and τ2
with τ1 > τ2 to obtain the binary images

E1 = E > τ1, E2 = E > τ2.

The edges in E1 are called strong edges and the ones in E2 are called weak edges.
Connected components from E2 are then extracted. A component is deemed an edge
segment if one or more of its pixels are strong edges, i.e. found in E1. The union of
edge segments then constitutes the nalࢸ edge image.

2.5 Hough trflnsform
The Hough transform was originally an algorithm for detecting straight lines in images
where edges have been detected (Duda and Hart 1972; Hough 1962). This is achieved
through a voting scheme where each edge pixel votes for all possible lines going

8 2 Theory

through it. The space of lines is called the Hough space and its axes are given by
the parameters in the model, thus its dimensionality is the same as the degrees of
freedom in the model. The lines receiving the most votes can then be extracted as
the dominant straight lines in the image. With suitable parameterizations, this can
be generalized to other models.

Hough trflnsform for circles
A circle may be parameterized by the model

(x− a)2 + (y − b)2 = r2,

where (a, b) is the center and r is the radius of the circle. For this model, the Hough
space is thus 3-dimensional with axes a, b and r. An edge pixel with coordinates
(x0, y0) will vote for circles of the type

(x0 − a)
2 + (y0 − b)

2 = r2.

If r is kept xedࢸ we see this is a circle with center (x0, y0) that is voted for in the
Hough space. When r is increased the votes are cast for a circle with the same center
but with increased radius. Doing this for all r’s in the Hough space it is seen that
the point (x0, y0) votes for a cone in the Hough space. After the voting process,
the largest peaks in the Hough space can be extracted as the dominant circles. A
resolution for each parameter in the Hough space must be chosen initially.

2.6 RANdom SAmple Consensus (RANSAC)
RANdom SAmple Consensus (RANSAC) is an algorithm which is widely used in
computer vision for ttingࢸ parameterized models to data which may contain gross
errors, where classical techniques like least squares estimation fail (Fischler and Bolles
1981).
The idea behind the algorithm is to tࢸ the given model to a minimal subset of data
points, i.e. the smallest number of points necessary to tࢸ the model parameters and
then decide the amount of data points which agree with this ttedࢸ model, that is,
split the data points into inliers and outliers based on some distance function d. The
inliers are sometimes denoted the consensus set. This process is repeated a number
of times after which the model with the largest consensus set is chosen as the best
model. In Section 2.6 on the facing page, we describe how the number of iterations
can be chosen. Finally, the parameters may be improved by ttingࢸ the model to
all data points in the largest consensus set via e.g. least squares. The algorithm is
summarized in Table 2.4 on the next page. This process, thus yields a model only
ttedࢸ to the points which the models tࢸ well. The RANSAC algorithm can be seen
as sampling randomly in an inࢸnite-resolution Hough space, where points that have
high values in Hough space have high probability of being sampled.

2.6 RANdom SAmple Consensus (RANSAC) 9

In Figure 2.5 an example of the diࢷerent solutions obtained by classical least squares
and RANSAC is shown when the ttedࢸ model is a straight line. In the example, there
is a clear straight line, but also a very large proportion of outliers. The least squares
solution uses all points for ttingࢸ and thus emphasizes the outlier points a lot while
the RANSAC solution ignores them and successfully tsࢸ the straight line.

Table 2.4: Outline of the original RANSAC algorithm.

Given a model M(θ) which has n degrees of freedom, a set of m data points
p = {p1, p2, . . . , pm} where m ≥ n, a distance function d and a threshold T
repeat the process below N times

1. Sample n data points from p randomly.

2. Estimate the model parameters θ and model M(θ) from the sample.

3. Compute the consensus set for the model, i.e. determine the pi’s for
which

d(pi,M(θ)) < T,

The model with the largest consensus set is chosen and the parameters may
be improved by ttingࢸ a new model to this set.

−5 0 5

−5

0

5

x

y

(a) Line ttedࢸ with least squares.

−5 0 5

−5

0

5

x

y

(b) Line ttedࢸ with RANSAC.

Figure 2.5: Example of two ttedࢸ lines when using least squares and RANSAC.

Determining the number of iterfltions
We want to determine how many iterations N are needed to tࢸ the right model.
If n points are needed to tࢸ the model parameters, we need to have at least one
iteration where all n points are inliers from the underlying model. In most cases, is
it not feasible to try out every combination of n points and most often not necessary
(Hartley and Zisserman 2004).

10 2 Theory

Determining number of iterfltions with fl priori knowledge
If we have a priori knowledge about the probability ϵ that a given point is an outlier,
or have an educated guess about this, we can determine N for a given probability p
that at least one subset contains only inliers. The value of p is usually set to a value
very close to one. We can deduce that 1 − ϵ is the probability of a point being an
inlier and thus that (1− ϵ)n is the probability that a subset of n points are all inliers.
The probability of drawing a sample with at least one outlier is thus 1− (1− ϵ)n. The
probability that this happens in N trials, i.e. that no subset has only inliers is

(1− (1− ϵ)n)N .

Since p is the probability that at least one subset contains only inliers we have that

(1− (1− ϵ)n)N = 1− p⇒

N =
log(1− p)

log((1− (1− ϵ)n))
, (2.1)

which is then rounded up. Table 2.6 shows ⌈N⌉ for diࢷerent ϵ and n and p = 0.99.

Table 2.6: Number of iterations ⌈N⌉ needed for diࢷerent ϵ and n when p = 0.99.

n
ϵ

0.05 0.1 0.2 0.3 0.4 0.5

2 2 3 5 7 11 17
3 3 4 7 11 19 35
4 3 5 9 17 34 72
5 4 6 12 26 57 146
6 4 7 16 37 97 293
7 4 8 20 54 163 588

Determining number of iterfltions fldflptively
In most cases we do not know ϵ or have an educated guess hereof. We can however
utilize that the RANSAC algorithm naturally gives an upper bound ϵ̃ of ϵ. If we have
m data points and the largest consensus set after an iteration has size s we have the
upper bound

ϵ̃ = 1−
s

m
,

which then can be using to determining an upper bound Ñ of N by plugging it into
Equation (2.1). Hence, in each iteration we calculate ϵ̃ and Ñ and terminate the
algorithm when the number of iterations exceeds Ñ . Initially, we have s = 0 and Ñ
is set to∞. Table 2.7 on the next page shows an example with m = 25 and 18 points
in the largest consensus set.

2.7 Markov random ields (MRFs) 11

Table 2.7: Example of adaptively choosing the number of iterations. In this example
n = 2, m = 25 and the largest consensus set has size 18. It is seen that
the algorithm terminates after iteration 7.

Iteration 0 1 2 3 4 5 6 7
s 0 3 8 8 12 12 15 18
ϵ̃ 1 0.88 0.68 0.68 0.52 0.52 0.40 0.28
Ñ ∞ 318 43 43 18 18 11 7

2.7 Mflrkov rflndom eldsࡁ (MRFs)
In images, neighboring pixels often include information about each other. When
segmenting an image this information can be modeled and utilized with an MRF,
to obtain a segmentation with some degree of homogeneity, i.e. a good chance that
neighboring pixels belong to the same class. In this section, we present the MRF
modeling framework in the context of image segmentation. MRFs are also used for
various other tasks in computer vision, and we refer the reader to Li (2009) for more
information. This section is largely based on Aanæs (2015, Chapter 8).

Rflndom eldࡁ
Random eldsࢸ are generalizations of stochastic processes in the sense that the un-
derlying random variables may depend on other things than just time. Formally a
random eldࢸ F is a set of random variables Fi associated to a set of sites S, i.e.

F = {Fi : i ∈ S},

where the sites S are elements in some topological space. In an image, the set of
sites is the set of pixels. The random variables Fi can take values fi in a set of labels
L. For segmentation of foreground and background it is typical to use L = {0, 1} or
L = {−1, 1}.

Mflrkov rflndom eldࡁ (MRF)
The Markov part of MRFs indicates that they are random eldsࢸ with a Markov
property. The regular Markov property states that the conditional probability of
a future state given the past states is only dependent on the present state, that
is P (xt+1 |xt, xt−1, . . . , x1) = P (xt+1 |xt). In a random ,eldࢸ the sites S are not
necessarily ordered in time but they are however related via a neighborhood structure
N , which the Markov property can be generalized to. A neighborhood structure is a
set of neighborhoods Ni for each site i, where the neighborhoods have the properties
that

• no site can be a neighbor to itself, i.e. i /∈ Ni,

12 2 Theory

• if a site i is a neighbor of j then j is a neighbor of i, i.e. i ∈ Nj ⇔ j ∈ Ni.

The Markov property is generalized to sites by

P (Fi = fi |Fj = fj , j ∈ {S\i}) = P (Fi = fi |Fj = fj , j ∈ Ni).

Images have a natural 4-neighborhood structure where the neighborhood of a pixel is
the pixel above, below, to the left and to the right of it. Furthermore a MRF must
satisfy that,

P (f) > 0, ∀f ∈ F,

where F = Lm is the set of all labelings, and f = {F1 = f1, F2 = f2, . . . , Fm = fm} is
a speciࢸc labeling, hence the constraint says that all labelings must be possible.
An MRF is just a distribution on a .eldࢸ However, what we are interested in is an
image segmentation, i.e. an optimal labeling. Typically, this is found as the maximum
a posteriori (MAP) solution to the MRF. It turns out that this solution is much easier
to compute using Gibbs random eldsࢸ (GRFs), which we deࢸne in the next section.
Fortunately the Hammersley-Cliࢷord theorem states these are equivalent with respect
to the same neighborhood structure (Hammersley and Cliࢷord 1971).

Gibbs rflndom eldsࡁ (GRFs)
A GRF is a random eldࢸ which follows a Gibbs distribution. Before we introduce the
Gibbs distribution, we must rstࢸ deࢸne the notion of cliques. A clique c is a subset
of sites in S. It can be either a single site i or a set of sites which are all neighbors
to each other. The cliques containing only single sites C1 = S are called the set of
1-cliques, the cliques containing two sites C2 = {{i, j} | i ∈ S, j ∈ Ni} are called the
set of 2-cliques and so on. The collection of all cliques is then C = C1 ∪ C2 ∪ · · · . For
images with the natural 4-neighborhood structure C consists only of 1- and 2-cliques,
since no three pixels are all pairwise neighbors.
Let f = {F1 = f1, F2 = f2, . . . , Fm = fm} be a labeling. Then the Gibbs distribution
is given by

P (f) =
exp

(
−U(f)

T

)

∑
f ′∈F

exp
(

−U(f ′)
T

) , (2.2)

where

U(f) =
∑

c∈C

Vc(f).

T is a scalar called the temperature, and U(f) is called the energy function and is
deࢸned as a sum of clique potentials Vc(f) which, given f , are energy functions of the

2.7 Markov random ields (MRFs) 13

labels assigned to the sites in clique c. From Equation (2.2) on page 12, it can easily
be seen that

argmax
f∈F

P (f) = argmin
f∈F

U(f),

hence ndingࢸ the optimal labeling comes down to minimizing an energy function.

Imflge segmentfltion
In order to use MRFs for image segmentation, we have to deࢸne the clique potentials
Vc(f) to obtain an energy function U(f). As mentioned earlier, if we model the MRF
using the 4-neighborhood structure there are only 1-cliques and 2-cliques. If Vc(f) is
independent on the position of clique c then U(f) can be rewritten as a sum of terms
corresponding to cliques of certain size

U(f) =
∑

c∈C

Vc(f)

=
∑

i∈C1

V1(fi) +
∑

{i,j}∈C2

V2(fi, fj),

thus we need to deࢸne the functions V1 and V2 determining the 1-clique and 2-clique
potentials respectively. When we only have two labels L = {0, 1} the 1-clique poten-
tials are deࢸned as

V1(fi) =

{
− log(p0(x)) if fi = 0

− log(p1(x)) if fi = 1
,

where p0(x) and p1(x) are two probability density functions (PDFs) belonging to label
0 and label 1, as a function of pixel value. These are usually deࢸned based on the
image data. If only the 1-clique potentials were used, we would thus get a pixel-wise
classiࢸcation without the smoothness prior. The 2-clique potentials are deࢸned as

V2(fi, fj) =

{
−βij if fi = fj

βij if fi ̸= fj
,

where βij are predeࢸned scalars. The 2-clique potentials can be regarded as smooth-
ness priors, where we see that we reward the energy function U(f), which we want
to minimize, with a negative value if two neighbors have the same label and punish
it with a positive value if two neighbors have diࢷerent labels. Hence if the βijs are
set to high values, the optimal labeling will be very homogeneous.

It has been shown that for two labels the MAP-MRF solution can be found as mini-
mum cut in a graph (Kolmogorov and Zabih 2004).

14 2 Theory

2.8 Gflussifln mixture model (GMM)
A multivariate normal distribution has PDF

f(x|µ,Σ) =
1

(2π)k/2 |Σ|1/2
exp

(
−
1

2
(x− µ)TΣ−1(x− µ)

)
,

where x is a k-dimensional random vector, |Σ| is the determinant of the symmetric
k × k covariance matrix Σ and µ is the k-dimensional mean vector.
Using this we can deࢸne the PDF of a GMM as a weighted sum of N multivariate
normal distributions.

p(x) =
N∑

n=1

wnf(x|µn,Σn), s.t.
N∑

n=1

wn = 1,

where wn, µn and Σn is the weight, mean vector and covariance matrix for the
nth normal distribution. Figure 2.8 shows an example of a GMM for three one-
dimensional normal distributions.
A GMM can be ttedࢸ to a set of data points using the expectation-maximization
algorithm (Dempster et al. 1977).

0 20 40

0

0.05

0.1

0.15

0.2

x

Pr
ob

ab
ili
ty

(a) Plot of f(x) for three one-dimensional nor-
mal distributions.

0 20 40

0

0.02

0.04

0.06

x

Pr
ob

ab
ili
ty

(b) GMM of the normal distributions in (a)

Figure 2.8: Example of a GMM for three one-dimensional normal distributions. The
normal distributions have the following parameters µ1 = 15, µ2 = 21,
µ3 = 28, σ1 = 4, σ2 = 2 and σ3 = 3, and the weights for the GMM are
w1 = 0.3, w2 = 0.2, w3 = 0.5.

2.9 Dynflmic progrflmming
Dynamic programming is a method that can be used to solve problems that are
very computationally expensive to solve exhaustively. The problem is broken down

2.10 Geometrical least squares for straight lines 15

into smaller subproblems where each problem is only solved once, which makes it
computationally eࢺcient. In dynamic programming, the structure of the problem is
also used to design how to store the solutions of the subproblems in memory.

Checkerboflrd problem
Let each square on an n × m checkerboard have an assigned value d(i, j), where i
is the row and j is the column. We want to ndࢸ the path with the maximal sum
that goes from left to right on this checkerboard, but we can only move diagonally up
right, straight right, and diagonally down right. That means that from (i, j) we can
only move to {(i− 1, j + 1), (i, j + 1), (i+ 1, j + 1)}. In order to break this problem
into subproblems, we will consider the maximal path that goes through (i, j), and
designate the sum of this path as q(i, j). Since there are only three possible squares
that we can come from in order to reach this position, so the maximal one of them
will be the one that the path has to go through to be maximal. We can now compute
q(i, j) as follows.

q(i, j) =





∞ if i < 1 or i > m

d(i, j) if j = 1

d(i, j) +max(q(i− 1, j − 1), q(i, j − 1), q(i+ 1, j − 1)) otherwise

This is very simple to calculate for increasing values of i as each calculation only
relies on previously computed values of q. Once q(i,m), i ∈ {1, 2, . . . , n} has been
calculated, we have computed the value of the maximal paths that end in each square
in the last column. The value of the globally maximal path will then be max

i
q(i,m).

The squares that the path goes through can then be determined by looking at where
the maximum value was taken from in the calculation of q. The path can then be
computed by.
pm ← argmax

i

q(i,m)

for j = {m− 1,m− 2, . . . , 1} do
r ← {p(j + 1)− 1, p(j + 1), p(j + 1) + 1}
pj ← argmax

i∈r

q(i, j)

end for

This can be used to ndࢸ the path with maximal sum through an image without having
to try all paths.

2.10 Geometricfll leflst squflres for strflight lines
Given a set of points, we want to tࢸ a line through the points which minimizes the
sum of squared distances from the points to the line. We parameterize the line as

ax+ by = r.

16 2 Theory

Given that a2 + b2 = 1, we can compute the signed distance di from a point to a line
by

d =




d1
d2
...
dn


 =




x1 y1 1
x2 y2 1
...

...
...

xn yn 1






a

b

−r




With this parameterization, we can multiply the line with a scalar s without changing
the line. This yields

s · d =




s · d1
s · d2
...

s · dn


 =




x1 y1 1
x2 y2 1
...

...
...

xn yn 1






s · a
s · b
−s · r


 = X



l1
l2
l3


 = Xl

If we use the line multiplied by s we can compute the sum of squared distances as

s2
n∑

i=1

d2i = ∥s · d∥22 = ∥Xl∥2 .

We can ndࢸ a non-trivial solution that minimizes this using singular value decompo-
sition (SVD) (Björck 1996, p. 185).

argmin
l
∥Xl∥2 s.t. ∥l∥2 = 1

The problem with this approach is that the error minimized is not only the sum of
squared distances but also the scale. This results in very bad tsࢸ when r is close to
zero, as illustrated in Figure 2.9(a) on the facing page. In order to mitigate this we
solve the geometrical least squares problem, where the Euclidean distance from the
points to the line is minimized.

argmin
l

n∑

i=1

d2i

The rstࢸ principal component of the points solves this problem (Groen 1996). The
result of this is shown in Figure 2.9(b) on the next page.

2.11 Camera model 17

...

..0. 20. 40. 60. 80. 100.0 .
10

.

20

.

30

.

40

.

50

.

60

.

70

.

80

.

90

.

100

.
x

.

y

(a) Line ttedࢸ with SVD as described
above.

...
.. 0. 20. 40. 60. 80. 100.0.
10

.

20

.

30

.

40

.

50

.

60

.

70

.

80

.

90

.

100

.
x

.

y

(b) Total least squares solution.

Figure 2.9: Example of two ttedࢸ lines when using SVD and total least squares.

2.11 Cflmerfl model
With the pinhole camera model, projection of the world points in homogeneous coor-
dinates to an image plane is done by the 3× 4 projection matrix

P = K
[
R t

]

=



f 0 px
0 f py
0 0 1


 [
R t

]

=



fR1,1 + pxR3,1 fR1,2 + pxR3,2 fR1,3 + pxR3, 3 ft1 + pxt3
fR2,1 + pyR3,1 fR2,2 + pyR3,2 fR2,3 + pyR3, 3 ft2 + pxt3

R3,1 R3,2 R33 t3


 (2.3)

Here
[
R t

]
is rotation and translation to the camera’s coordinate system and K

is the projection to the image plane, where f is the focal length and (px, py) is the
principal point. The rotation matrix can be deࢸned by roll ϕ, pan θ and tilt ψ angles
as

R = Rz(ϕ)Rx(θ)Ry(ψ)

=



cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1





1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)






cos(ψ) 0 sin(ψ)
0 1 0

− sin(ψ) 0 cos(ψ)




=



cos(ϕ) cos(θ) − sin(ϕ) cos(ψ) + cos(ϕ) sin(θ) sin(ψ) sin(ϕ) sin(ψ) + cos(ϕ) sin(θ) cos(ψ)
sinϕ cos(θ) cos(ϕ) cos(ψ) + sin(ϕ) sin(θ) sin(ψ) − cos(ϕ) sin(ψ) + sin(ϕ) sin(θ) cos(ψ)
− sin(θ) cos(θ) sin(ψ) cos(θ) cos(ψ)


.

18

CHAPTER 3
Data

3.1 Dfltflsets
During our project we have worked with two datasets, which we will refer to as dataset
1 (DS1) and dataset 2 (DS2). During our experiments, we have recorded video with
the back camera of iPhones, an overview is in Table 3.1 and Figure 3.2 shows the test
setup for each dataset. We also have video available from the radar’s internal camera,
and we provide an overview of the technical speciࢸcations in Table 3.3 on page 21. In
each dataset, we have a selection of diࢷerent golf clubs. An overview is provided in
Table 3.4 on page 21.

Table 3.1: iPhones used for each dataset.

Dataset Camera
DS1 iPhone 6s
Dataset 2 normal lens (DS2n) iPhone 6 Plus
Dataset 2 zoom lens (DS2z) iPhone 6 Plus with 2x zoom lens

(a) DS1 (b) DS2. On the left DS2z (pictured without zoom
lens), and on the right DS2n.

Figure 3.2: Test setup for each dataset.

20 3 Data

(a) Radar internal camera. (b) DS1

Figure 3.5: Example of a frame from each camera in DS1.

(a) Radar internal camera. (b) DS2n

(c) DS2z

Figure 3.6: Example of a frame from each camera in DS2.

3.2 Annotations 21

Table 3.3: Technical video information

Camera FPS Resolution Bitrate Codec
TrackMan 4 45 1280× 960 6.6 Mbps H.264iPhone 240 720× 720 24.5 Mbps

Table 3.4: Clubs used and number of strokes.

Club
Number of strokes

Stroke range
Total With ground truth

DS1
Driver 1 17 17 1-17
Driver 2 9 9 18-26
Iron 1 16 14 27-42
Wedge 1 13 11 43-55
DS2
Driver 1 30 29 16-30, 46-60
Driver 3 15 15 1-15
Iron 2 15 15 61-75
Wedge 2 15 15 31-45

3.2 Annotfltions

Ground truth impflct point
In order to evaluate how well our method is performing it is necessary to compare with
a ground truth. We obtain this by spraying the golf club head with foot deodorant
prior to each stroke. This leaves a thin layer on the club face, which is removed on
impact with the golf ball as seen in Figure 3.7 on the following page. This gives us a
visual cue for the impact location.

In order to be able to quantify this, we create a coordinate system on the club face
by measuring with a ruler where the lines on the club face are located. We have
then annotated all the lines in each ground truth image and computed a homography
between them and the measured lines. This is because the club face is not always
parallel with the image plane of the camera taking the ground truth image.

Initifll bflll position
In each video, we have annotated the position and radius of the initial ball to be able
to quantify the performance of this part of our method. Example of an annotation is
in Figure 3.8(a) on the next page.

22 3 Data

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

Figure 3.7: Ground truth example, where the image has been transformed using the
homography. Red is standard lines, green is annotated impact ball. Axes
are in cm.

Position of rstࡁ visible post-impflct bflll
In our dataset, we have annotated the position of the ball in the rstࢸ frame where it
is visible after impact. An example can be seen in Figure 3.8(b).

Lflst flnchor point before impflct
We have annotated the anchor point in the last frame before impact. This can be
seen in Figure 3.8(c).

(a) Initial annotated ball. The
blue circle shows the perimeter
and the red dot the center.

(b) Annotation of the ball rstࢸ
time it’s visible after impact.

(c) Annotation of last anchor
point before impact.

Figure 3.8: Examples of annotated elements.

CHAPTER 4
Methods

In this chapter, we describe our method for detecting the ball’s impact location on
the club face. In very short terms we estimate the trajectory of the club and ball
and compare these at the time of impact. An outline of the method is presented in
Table 4.1. Our method has been implemented in MATLAB (2016).

Table 4.1: Outline of our entire method.

Given a video of a golf stroke recorded at a high frame rate behind the golf
player, we do the following.

1. Track the ball’s ightࢹ path.

2. Determine the location of the initial ball position.

3. Use ightࢹ path and initial position to compute the impact time.

4. Determine the point on the shaft where the shaft ends and the head
begins. This point is referred to as the anchor point.

a) Detect the club shaft.
b) Segment the club head.
c) Determine the anchor point.

5. Fit a model to the anchor points detected in each frame of the swing.

6. Interpolate the anchor point at impact time.

7. Estimate a homography between the club face in the image plane and
the club face coordinate system at impact. The club face coordinate
system has origin at the impact point.

8. Use the homography to map the anchor point to the club face coordi-
nate system.

9. Given the coordinate of the anchor point in the standard club face
coordinate system with origin in the middle of the club, we can compute
the impact point by subtracting the vectors from each other.

24 4 Methods

4.1 Preliminflries

Bflll ightࡂ trflcking
To track the ball’s ightࢹ path in our videos we use a tracker developed by TrackMan
A/S. In very short terms it uses diࢷerences in neighboring frames to detect changed
objects. From this, a number of tracks which are consistent with a physical model of
a yingࢹ object only aࢷected by gravity are generated.

Selection of bflll ightࡂ trflck
Because the ball tracker outputs multiple tracks, there is need for a method to select
the one corresponding to the ball. Other tracks may include yingࢹ dirt, the tee and
noise and so on. The radar data contains a function fball : R → R

3 that describes
the ightࢹ path of the ball. This is not accurate enough to select the correct track by
least squares, but it still contains useful information. We project the ball ightࢹ to our
camera

pball(t) = P
[
fball(t)

1

]

Using this projection we can compute the velocity of the ball in the y-direction of the
video as a function of time

vy(t) = p′ball,y(t) ≈ FPS
(
pball,y(t)− pball,y

(
t−

1

FPS

))
.

Let pball,y−1(y) be the inverse function of pball,y(t). If we plug this in to vy(t) we
obtain a function which yields the pixel velocity in the y-direction as a function of
the position in the y-direction

Vy(y) = vy(pball,y
−1(y))

The track corresponding to the ball ightࢹ can then be selected as the track that has
the most similar pixel velocity for each y in the track. The result of this process is
shown in Figure 4.2 on the next page.

Cflmerfl cfllibrfltion
The goal of this section is to achieve a camera calibration w.r.t. the radar’s coordinate
system, so we can project radar coordinates to the camera. Additionally, we also use
the internal camera parameters to correct for radial optical distortion and we apply
our method only on undistorted images.

Dfltflset 1
We have calibrated the internal parameters using a similar iPhone and a checkerboard.
The radar has tracked the ball ightࢹ in R

3. Given a set of external parameters

4.1 Preliminaries 25

Figure 4.2: Example of all tracks generated by the ball tracker. The pink one is
the track selected by our selection process, which corresponds to the ball
track.

for the camera, we can project all ball ightsࢹ to the camera and compare them
with the tracked ball paths. We use numerical optimization to estimate the external
parameters that minimize this reprojection error.

Dfltflset 2

We have calibrated the internal parameters using a checkerboard on location. The
internal camera in the radar has a factory calibration w.r.t the radar’s coordinate
system. We use this fact so we only have to estimate the relative pose of the iPhones
w.r.t. the internal camera. In order to estimate this, we have selected four frames
with identically placed checkerboards in both iPhones and the internal camera in the
radar. The relative pose can then be estimated by minimizing the reprojection error
of the corner points of the checkerboards, as is commonly done in stereo.

Diࡀerence imflge
In order to analyze a video meaningfully, it is relevant to use information from the
neighboring frames. We calculate an image that describes what parts of the image
have changed and by how much. We will refer to this as a diࢷerence image.

26 4 Methods

The diࢷerence image is computed as follows: Let V(f) be the f ’th frame from a
video, as in Figure 4.3(a) on the facing page. We can compute the signed diࢷerence
S between two frames, f1, f2:

S(f1, f2) = V(f1)−V(f2). (4.1)

Now we can compute the diࢷerence image D for a speciࢸc step size s as

D(f, s) =
√

max(0,S(f, f − s) ◦ S(f, f + s)) , (4.2)

where ◦ denotes the Hadamard product. The reasoning behind Equation (4.2) is as
follows. If the motion is fast enough and the step size is not too small, both V(f − s)
and V(f + s) will contain background pixels, where the motion is in V(f). In the
signed diࢷerence images Figure 4.3(b) on the facing page there is both positive and
negative values which make them hard to interpret directly. The moving object is
either brighter or darker than the background, but the diࢷerence will have the same
sign for both forward and backward diࢷerences if it is a pixel that has changed in
frame f . This implies that the product of diࢷerences will always yield a positive value
where the pixel has changed in f with respect to both images. Because of this, the
negative values are removed with a max. To compensate for the values being almost
squared by the product, a square root is taken.

Bflckground imflge
In frames, during the swing, we will need to know a background image, i.e. an image
with the moving parts removed. For frame f in the video, we calculate this as

B(f) = median
s∈{−4,−2,0,2,4}

V(f + s),

where V(f) is the f ’th frame in the video. An example of a background image is
shown in Figure 4.4 on page 28.

4.1 Preliminaries 27

(a) Video frames: V(f − 2),
V(f), V(f + 2)

(b) Frame diࢷerences:
S(f, f − 2), S(f, f + 2).
Blue is positive values, red is
negative.

(c) Diࢷerence image: D(f, 2)

Figure 4.3: Calculation of a diࢷerence image with step size 2. All images shown are
a cropped version of the full frame for clarity.

28 4 Methods

(a) V(f − 4), V(f − 2), V(f), V(f + 2), V(f + 4).

(b) Background image B(f).

Figure 4.4: Example of a computed background image B(f) and the video frames
that have been used to compute it.

4.2 Initial ball location 29

4.2 Initifll bflll locfltion
In this section we describe how we locate the initial ball position, i.e. where the ball
lies still before it is hit.

Region of interest (ROI)
The radar gives a position (x0, y0, z0) ∈ R

3, which can be projected to the camera in
homogeneous coordinates via

p0 = s



p0,x
p0,y
1


 = P




x0
y0
z0
1


 ,

where P is the projection matrix from the radar coordinate system to the image
plane and (p0,x, p0,y) ∈ R

2 are the pixel coordinates. These coordinates will contain
some error due to the fact that the radar position is extrapolated back to the time of
impact from the measured radar data and errors in the camera calibration. Therefore
we determine a ROI around (p0,x, p0,y), where we try to locate the ball. We can
calculate an approximate radius of the ball in pixels with the formula

rpx,approx =
rmm · f

z0mm

, (4.3)

where rpx,approx is the ball radius in pixels, rmm is the ball radius in mm, f is the
focal length of the camera, and z0mm

is the depth coordinate of the ball in the radar
coordinate system. Since the camera is placed at nearly the same depth as the radar
this is a decent approximation. The ROI is then chosen as

ROI = [p0,x − 6rpx,approx, p0,x + 6rpx,approx]× [p0,y − 6rpx,approx, p0,y + 6rpx,approx],

i.e. a square around (p0,x, p0,y) with side length 12rpx,approx. An example of a chosen
ROI can be seen in Figure 4.5 on the following page.

Diࡀerence imflge
We locate the ball by looking for diࢷerences in the frames before and after the ball
has been hit. The radar gives a rough estimate t0radar

of this impact time. Relative
to this impact time we choose 8 frames before, and 8 frames after. It is important
that the rstࢸ 8 frames are chosen when the golf ball is visible. We extract frames at
the following times relative to t0radar

tpre = { −.5 s, −.4375 s, −.375 s, −.3125 s, −.25 s, −.1875 s, −.125 s, −.0625 s},
tpost = {.25 s, .375 s, .5 s, .625 s, .75 s, .8125 s, .875 s, .9375 s}.

30 4 Methods

Figure 4.5: Example of the ROI we use to ndࢸ the ball. The red dot is (p0,x, p0,y)
and the enlarged square is the ROI.

These times have been chosen empirically. At 240 FPS, which our videos are recorded
at, the impact radar frame is f0radar

= ⌊t0radar
· 240⌋, and the frames used relative to

this are

fpre = {240
1
s · t}t∈tpre

= {−120,−105,−90,−75,−60,−45,−30,−15},

fpost = {240
1
s · t}t∈tpost

= {60, 90, 120, 150, 195, 210, 225}.

Using these sixteen frames we calculate a diࢷerence image. This is done slightly
diࢷerently than described in Section 4.1 on page 25. We start by computing eight
signed diࢷerence images using Equation (4.1) on page 26

Si = S(f0radar
+ fpre,i, f0radar

+ fpost,i), i ∈ {1, 2, . . . , 8},

where fpre,i is the i’th element of fpre and similarly for fpost,i. Then we construct
our diࢷerence image D as

D =
√

min
i∈{1,2,3,4}

max (0,Si ◦ Si+4) .

Note that this is inherently diࢷerent from other diࢷerence images that we use in
that this ndsࢸ diࢷerences in the frames before and after a given time, where other
diࢷerence images describe which parts are moving at a speciࢸc time. The idea behind
this formula is similar to the reasoning in Section 4.1 on page 25, with the diࢷerence

4.2 Initial ball location 31

that we do not have a central image that all the signed distances are computed with
respect to. The ball will have high absolute values in all of them with the same sign,
and high values in other pixels, primarily shadows, may only occur in one or few of
them. The diࢷerence image and its constituents can be seen in Figure 4.6

(a) The eight signed diࢷerence images {S1,S2, . . . ,S8}.

(b) The four
{

√

max (0,Si ◦ Si+4)
}

i∈{1,2,3,4}
images.

(c) From left to right: D and E

Figure 4.6: Illustration of images used to compute E.

Detecting bflll fls fl circle

We use the diࢷerence imageD to detect the ball as a circle. We do this in two diࢷerent
ways; using the Hough transform and using RANSAC. For both of these, we need
to extract pixels that lie on edges in the image. We use the Canny edge detector to
obtain the binary image E of edges.

32 4 Methods

Hough trflnsform
We apply the Hough transform on D. The implementation we use computes the
circles a little diࢷerent from the standard Hough transform. First, it detects possible
circle centers by using the gradient directions in D. Then it merges close centers
together. For each of these a radius is computed (Peng 2005). To extract the circle
that corresponds to the ball we weigh the circles detected by the sum of pixels from
D that are inside the circles. After this weighing, the most dominant circle is chosen
to as the ball.

RANSAC
We can also detect circles in D using RANSAC. The model used is

M(xc, yc, r) : (x− xc)
2 + (y − yc)

2 = r2,

where (xc, yc) ∈ R
2 is the center of the circle and r is the radius. Thus, in each

RANSAC iteration three points are needed. We solve the system of equations for the
three points using a method based on computing determinants (Anton and Rorres
2010, Chapter 10.1).
In this application, we are only interested in circles of a relatively small radius. This
gives rise to an eࢺcient way of picking the three points in each RANSAC itera-
tion. Speciࢸcally, because we have an approximation of the radius rpx,approx from
Equation (4.3) on page 29 we are only interested in circles with radius less than
rmax = 1.2 · rpx,approx. If any of the distances between the three points is bigger than
2 · rmax, we can know for sure that the circumcircle will have a radius greater than
rmax. This is computationally eࢺcient to check before we tࢸ the circle, and avoids
ttingࢸ circles we are certain will be too large.
Let d(x1, x2) be the Euclidean distance between x1 and x2, and p be points represent-
ing all edge pixels in E. Then we pick the three points in each RANSAC iteration as
follows:

1. Pick a point p1 at random.

2. Compute the distances d(p1, p) to all other points p.

3. Choose two random points p2 and p3 for which d(p1, p2) < 2·rmax and d(p1, p3) <
2 · rmax

4. Repeat 3. until d(p2, p3) < 2 · rmax.

This procedure ensures that we tࢸ fewer circles with a radius larger than rmax, com-
pared to naively sampling three points. In order to count inliers in a manner that
does not favor larger circles, we normalize the number of inliers in any iteration by
dividing it with the radius r.

4.3 Computing impact time 33

4.3 Computing impflct time

Impflct time with lineflr ightࡂ flssumption
Let (x, y, z) be a point in R

3. In homogeneous coordinates, we can map this into
pixel-coordinates (px, py) with the 3× 4 projection matrix P

s



px
py
1


 = P




x

y

z

1


 , (4.4)

where s is a scaling factor. For a short time after impact, we may assume that a golf
ball travels in a straight line in R

3. Hence, its position as a function of time t can be
described by



x(t)
y(t)
z(t)


 =



x0
y0
z0


+



xv
yv
zv


 · t =



x0 xv
y0 yv
z0 zv



[
1
t

]
,

where (x0, y0, z0) is the starting point and (xv, yv, zv) is a velocity vector. We can
write this in homogeneous coordinates as




x(t)
y(t)
z(t)
1


 =




x0 + xv · t
y0 + yv · t
z0 + zv · t

1


 =




x0 xv
y0 yv
z0 zv
1 0



[
1
t

]
(4.5)

If we can combine Equations (4.4) and (4.5) we get the pixel-coordinates px(t) and
py(t) of the ball as a function of time t

s



px(t)
py(t)
1


 = P




x0 xv
y0 yv
z0 zv
1 0



[
1
t

]

=



Q1,1 Q1,2

Q2,1 Q2,2

Q3,1 Q3,2



[
1
t

]

Under the assumption that the ball moves on a straight line in R
3 it will also move

on a straight line in the image plane (Hartley and Zisserman 2004, pp. 196-197). We
change the coordinate system such that the x-axis corresponds to this line with the
origin at the initial ball position. This is illustrated in Figure 4.7 on page 35. We
denote the new axes by p′x and p′y. The change of coordinate system is done through
a rotation and translation. If px0 = px(0) and py0 = py(0) i.e. the initial ball position

34 4 Methods

and −θ is the angle that we need to rotate the coordinate system with we ndࢸ that

s



p′x(t)
p′y(t)
1


 = Rz(−θ)





s (px(t)− px0)
s (py(t)− py0)

s






=




cos θ sin θ 0
− sin θ cos θ 0

0 0 1







spx(t)
spy(t)
s


−



spx0
spy0
0






=



cos θ − sin θ 0
sin θ cos θ 0
0 0 1





Q1,1 Q1,2

Q2,1 Q2,2

Q3,1 Q3,2



[
1
t

]
− s



cos θ · px0 − sin θ · py0
sin ·px0 + cos θ · py0

0




︸ ︷︷ ︸
b

=



cos θ ·Q1,1 − sin θ ·Q2,1 cos θ ·Q1,2 − sin θ ·Q2,2

sin θ ·Q1,1 + cos θ ·Q2,1 sin θ ·Q1,2 + cos θ ·Q2,2

Q3,1 Q3,2




︸ ︷︷ ︸
Q̃

[
1
t

]
− s



b1
b2
0




=



Q̃1,1 Q̃1,2

Q̃2,1 Q̃2,2

Q̃3,1 Q̃3,2



[
1
t

]
− s



b1
b2
0




We note that p′y(t) = 0 for all t ∈ R, and only use that

[
sp′x(t)
s

]
=

[
Q̃1,1 Q̃1,2

Q̃3,1 Q̃3,2

] [
1
t

]
− s

[
b1
0

]
(4.6)

We denote the distance in pixels at time t to the initial position of the ball by d(t).
Since the points lie on the p′x axis, we see that d(t) = p′x(t). We thus have that

d(t) = p′x(t) =
Q̃1,1 + Q̃1,2 · t−

(
Q̃3,1 + Q̃3,2 · t

)
b1

Q̃3,1 + Q̃3,2 · t

=

(
Q̃1,1 − Q̃3,1b1

)
+

(
Q̃1,2 − Q̃3,2b1

)
t

Q̃3,1 + Q̃3,2 · t

=
c1 + c2 · t

c3 + c4 · t

4.3 Computing impact time 35

θ

p
y
’

p
x
’

(p
x0
,p

y0
)

d(t
4
)

p
y

p
x

Figure 4.7: Illustration of the coordinate change. The (px, py)-axes are the original
image coordinate system and the (p′x, p

′
y)-axes are our new coordinate

system with origin in the initial ball position (px0, py0). θ is the angle
that the original coordinate system is rotated with. This also illustrates
that p′x(t) = d(t).

Now let c =
[
c1 c2 c3 c4

]T then

d(t) =
c1 + c2 · t

c3 + c4 · t
⇒

d(t) · (c3 + c4 · t) = c1 + c2 · t⇒

d(t) · (c3 + c4 · t)− (c1 + c2 · t) = 0⇒
[
−1 −t d(t) d(t) · t

]
c = 0

If we track the moving golf ball through n video-frames after impact with known
times t1, t2, . . . , tn, and measure the distances d(t1), d(t2), . . . , d(tn) in pixels to the

36 4 Methods

initial position we can combine all these into a matrix

B =




−1 −t1 d(t1) d(t1) · t1
−1 −t2 d(t2) d(t2) · t2

...
−1 −tn d(tn) d(tn) · tn


 ,

and then solve the linear system

Bc = 0, (4.7)

to ndࢸ c. We need the constraint ∥c∥ ̸= 0, since the zero-solution is trivial and
not useful in any way. We ensure this by requiring that ∥c∥ = 1. Since measure-
ments will include noise Equation (4.7) will not hold perfectly so we instead solve the
minimization problem

min
c
∥Bc∥2 s.t. ∥c∥2 = 1.

This is a least squares problem which we can solve using SVD (Björck 1996, p. 185).

When c is found, we can compute the time of impact. At impact time t0 we know
that d(t0) = 0 hence

c1 + c2 · t0
c3 + c4 · t0

= 0⇒ t0 =
−c1
c2

.

Non-lineflr minimizfltion

The error that we minimize in the previous section is not statistically meaningful. It
is of interest to model the error only on the observations we expect to contain errors
i.e.

d(t) =
c1 + c2 · t

c3 + c4 · t
+ ϵt,

where ϵt is the noise. Moving the terms around we get
[
−1 −t d(t) d(t) · t

]
c = (c3 + c4t)ϵt,

thus the minimization becomes

min
c
∥Bc∥22 = min

c

n∑

i=1

([
−1 −ti d(ti) d(ti) · ti

]
c
)2

= min
c

n∑

i=1

((c3 + c4ti)ϵti)
2.

4.3 Computing impact time 37

We see that points are not weighted equally but with the value of the function in the
denominator. A more meaningful minimization would be

min
c

n∑

i=1

ϵ2ti = min
c

n∑

i=1

(
d(t)−

c1 + c2t

c3 + c4t

)2

,

We solve this with a nonlinear minimization algorithm and use the linear estimate as
a starting guess.

Impflct time with grflvity included
If we want to incorporate gravity in our model and drop the assumption that the
ightࢹ path is linear we need to add a quadratic term to Equation (4.5) on page 33 to
get




x(t)
y(t)
z(t)
1


 =




x0 + xv · t
y0 + yv · t+ ya · t

2

z0 + zv · t
1


 =




x0 xv 0
y0 yv ya
z0 zv 0
1 0 0






1
t

t2




If we assume that the camera is level with vertical and horizontal, i.e. that θroll =
θtilt = 0 we see from Equation (2.3) on page 17 that P1,2 = P3,2 = 0 in the projection
matrix P hence we get the pixel coordinates.

s



px(t)
py(t)
1


 =



P1,1 0 P1,3 P1,4

P2,1 P2,2 P2,3 P2,4

P3,1 0 P3,3 P3,4







x0 xv 0
y0 yv ya
z0 zv 0
1 0 0






1
t

t2




=



Q1,1 Q1,2 0
Q2,1 Q2,2 Q2,3

Q3,1 Q3,2 0





1
t

t2


 .

Note that the assumption θroll = θtilt = 0 will not hold exactly as it is diࢺcult to set
up the camera at speciࢸc angles. If the assumption is dropped px(t) and s will also
contain quadratic terms. With the assumption we obtain obtain the following models

px(t) =
Q1,1 +Q1,2 · t

Q3,1 +Q3,2 · t
, (4.8)

py(t) =
Q2,1 +Q2,2 · t+Q2,3 · t

2

Q3,1 +Q3,2 · t
. (4.9)

If we let q =
[
Q1,1 Q1,2 Q2,1 Q2,2 Q2,3 Q3,1 Q3,2

]T then Equations (4.8)
and (4.9) at time ti can be rewritten as

[
−1 −ti 0 0 0 px(ti) ti · px(ti)
0 0 −1 −ti −t

2
i py(ti) ti · py(ti)

]

︸ ︷︷ ︸
Bi

q = 0

38 4 Methods

If we have tracked the ball at times t1, t2, . . . , tn with corresponding pixel coordi-
nates (px(t1), py(t1)), (px(t2), py(t2)), . . . , (px(tn), py(tn)) we can stack the Bis into
the matrix

B =




B1

B2

...
Bn




and then solve Bq = 0. Again due to noise we instead solve the least squares
minimization problem

min
q
∥Bq∥2 s.t. ∥q∥2 = 1,

using SVD. Like in the linear case the error that is minimized is not meaningful and
we can reࢸne our estimate with non-linear minimization.
When px(t) and py(t) are determined we compute the impact time t0 as

t0 = argmin
t

(
(px0 − px(t))

2 + (py0 − py(t))
2
)
,

where (px0, py0) is the position of the initial ball. Note that this has an analytic
solution but we solve it numerically.

4.4 Anchor point detection
This section describes how we detect the anchor point. An outline is in Table 4.8 on
the facing page.

Diࡀerence imflge
In order to compute a diࢷerence image suitable for club detection, it is desirable to
have as few artifacts as possible. In Figure 4.3 on page 27, small regions of the club
head are not visible in the diࢷerence image because a shadow from the previous image
has the same color as the club. To compensate for this we use many step sizes.

steps = {1, 2, 3, 5, 15}.

Each of these will have their own artifacts, but if the median of all of these images
is taken, the resulting image will have very few artifacts as shown in Figure 4.9 on
page 40.

Dmed(f) = median
s∈steps

(D(f, s)) =
√

median
s∈steps

(max(0,S(f, f − s) ◦ S(f, f + s)))

D refers to Equation (4.2) on page 26. Because we take the median of an odd number
of elements, the result will be a single element from the set. This implies that we can
take the square root outside the median. The median diࢷerence image Dmed(f) will
from now on be referred to simply as a diࢷerence image.

4.4 Anchor point detection 39

Table 4.8: Outline of the anchor point detection method.

1. Compute a diࢷerence image for the current frame.

2. Detect most dominant straight line in edges of diࢷerence image.

3. Find path with maximal sum of pixels along straight line.

4. Greedily search along straight line for path with high pixel sum.

5. Robustly tࢸ quadratic to the two found paths.

6. Locate approximate center of club head.

7. Segment the club head.

8. Determine the anchor point by tracing the perimeter of the segmenta-
tion.

Initifll club shflft detection
Using the diࢷerence image introduced in Section 4.4 on page 38, we can now determine
an approximate location of the shaft. Edge detection is performed on the diࢷerence
image using the Canny edge detector (Canny 1986). Afterwards, we tࢸ a straight line
to the edge pixels with RANSAC, using the straight line model

M(θ, r) : x cos(θ) + y sin(θ) = r.

Club shflft reࡁnement
Using the straight line detected with RANSAC, we can sample a new image in a
small region around this line, rotated such that the straight line is parallel with the
x-axis, see Figure 4.11 on page 42. Figure 4.11(b) on page 42 shows the edge pixels
that are inliers w.r.t. the straight line projected onto it. Using dynamic programming
we compute the path from one side to the other of the rotated diࢷerence image that
has the biggest sum. We perform the dynamic programming on a smoothed image
to make the found solution smooth and centered on the club shaft. The dynamic
programming solution generally does very well at ndingࢸ the shaft. In some cases,
however, it diverges from the shaft near the club head if e.g. a cast shadow has a
higher diࢷerence value. This causes the dynamic programming to not trace the shaft
all the way because the path with maximal sum will trace part of the shadow as
Figure 4.11(d) on page 42 is an example of. Therefore, we incorporate a greedy
search that is not able to make sudden jumps but will stay on a local “ridge” in the
diࢷerence image, such as the shaft. Using the x-coordinate of the median of projected

40 4 Methods

(a) Step size 1 (b) Step size 2 (c) Step size 3

(d) Step size 5 (e) Step size 15 (f) Median of all step sizes

Figure 4.9: A close-up of the club head in D(f, s) for diࢷerent step sizes s, and the
median of images for all step sizes.

inliers, and sampling the corresponding y-value of the dynamic programming at this
x, we have a point that most likely is located in the middle of the shaft. From this
point, we initiate a greedy search towards both sides of the image. In this context
greedy search means to choose the neighboring pixel with the highest value when we
only are allowed to move either one pixel to the side or diagonally up and down. The
dynamic programming solution together with the greedy search usually covers the
entire club shaft with points.

It is now of interest to locate which of the points found by the dynamic programming
and the greedy search that are located on the shaft. The shaft curves slightly but it can
be described well by a second-degree polynomial, which we tࢸ to all the points using
RANSAC. In order to count inliers with RANSAC, we use the geometric distance to
the polynomial. For each x-coordinate, we discard the largest point-to-line distance,
which leaves us with either the distance to the point from the dynamic programming
solution or the greedy search. Then we count the number of inliers as the length of the
longest section where every point has at least 20 points within a speciࢸed threshold in
the 30 nearest points. The result of the ttingࢸ can be seen in Figures 4.11(f) and 4.12
on page 42.

4.4 Anchor point detection 41

(a) Diࢷerence image (b) Edge pixels. Green are in-
liers

(c) Detected line

Figure 4.10: Club shaft detection with RANSAC for straight lines.

Club hefld center locfllizfltion

Looking at where the inliers of the second-degree polynomial end, we can determine
an approximate location of the shaft end. A ROI of the rotated image around this
point is extracted as shown in Figure 4.13(a) on page 43. We threshold the ROI image
with a xedࢸ threshold, and identify the biggest connected component. We take sums
along columns of this component. The column containing the center of the club head
is chosen to be where the smoothed sum achieves its maximum value. An illustration
of this is in Figure 4.13(b) on page 43.

Club hefld segmentfltion

We segment the club head from the background using MRFs with a 4-neighborhood
structure. To model these we utilize both knowledge of which parts are moving, from
the diࢷerence image, and the color values. First, we use the determined club head
x-coordinate to sample some points on the ttedࢸ polynomial near the club head and
tࢸ a straight line to these. The angle of this line with vertical is denoted by θshaft.
Then we extract a ROI around the club head, rotated such that the y-axis is parallel
with the ttedࢸ straight line. The line and ROI are shown as the yellow line and red
box in Figure 4.16 on page 46. Since we know the ttedࢸ line lies on the club shaft we
force it to belong to the foreground by setting the probability of this to a high value,
and the probability of it being background to a very low value.

We threshold the diࢷerence image in the ROI with a xedࢸ threshold. This yields
an initial guess of a foreground and background segmentation, see Figure 4.15(d) on
page 45.

42 4 Methods

(a) Rotated color image. Not used for computation, only illustration.

(b) Green points are inliers projected to the straight line. Magenta is median of projected inliers.

(c) Rotated diࢷerence image.

(d) Dynamic programming.

(e) Greedy search.

(f) Fitted second degree polynomial. Red is outliers, green is inliers.

Figure 4.11: Illustration of the club shaft reࢸnement procedure.

Figure 4.12: Close up of the ttedࢸ second degree polynomial.

Empiricfll probflbility density functions (PDFs) for diࡀerence imflges

We estimate empirical probability density function (PDF) pd,f (xd) and pd,b(xd) for
the foreground and background in the diࢷerence images. We have done this by an-
notating the perimeter of the club head in ten diࢷerence images from DS1. These
empirical PDFs are used in all segmentation tasks. Examples of diࢷerence images

4.4 Anchor point detection 43

(a) Extracted ROI. (b) Thresholded ROI. Black indicates
the biggest connected component and
gray other thresholded areas. Blue is
the selected club center. Smoothed col-
umn sum of the biggest connected com-
ponent shown above.

Figure 4.13: Club center detection.

with corresponding color images and annotation masks are shown in Figure 4.14 on
the next page.

Probflbility density functions (PDFs) for color imflges

We use GMMs to model the PDFs in the color images. To cope with the correlation
between the red, green and blue color channels we perform principal component anal-
ysis (PCA) on the color image, see Figures 4.15(e) to 4.15(g) on page 45. We then
extract the ROI in the computed background image (see Section 4.1 on page 26) and
transform this to the PCA space. To this we tࢸ a GMM using two three-dimensional
Gaussian distributions to obtain the PDF pc,b(xc,pca). With the initial segmentation
we extract the foreground pixels and tࢸ a PDF pc,f (xc,pca) using a GMM with two

44 4 Methods

three-dimensional Gaussian distributions.

Segmentfltion
Assuming independence we can combine the PDFs from the diࢷerence image and the
color image to get the joint PDFs

pf (xd,xc,pca) = pd,f (xd) · pc,f (xc,pca),
pb(xd,xc,pca) = pd,b(xd) · pc,b(xc,pca).

These are the PDFs that we use to model the 1-clique potentials in the MRF. To
model the 2-clique potentials we set

βij =

{
βv if i and j are vertical neighbors
βh if i and j are horizontal neighbors,

where βv and βh are two predeࢸned values chosen empirically.
We compute the MAP-MRF solution to obtain a new segmentation. This is done iter-
atively using the computed segmentation to estimate a new pc,f (xc,pca) and thereby
pf (xd,xc,pca). Note that through these iterations pd,f (xd), pd,b(xd) and pc,b(xc,pca)
are kept .xedࢸ We stop after 10 iterations after which we have our nalࢸ segmentation
of the golf club.

Figure 4.14: Examples of extracted ROI in color image, diࢷerence image and the
annotated mask.

4.4 Anchor point detection 45

(a) Color image. (b) Diࢷerence image. (c) Background image. (d) Threshold segmenta-
tion.

-0.5

0

1

(e) Color image projected to
rstࢸ PCA component.

-0.1

0

0.25

(f) Color image projected to sec-
ond PCA component.

-0.03

0

0.03

(g) Color image projected to
third PCA component.

Figure 4.15: Images used for segmenting the club head from the background.

46 4 Methods

θ
shaft

Figure 4.16: Blue line is ttedࢸ polynomial. Yellow line is the one ttedࢸ to the end of
the inliers w.r.t. to the polynomial, red box is the extracted ROI for the
club head segmentation and θshaft is the shaft angle.

4.4 Anchor point detection 47

Shflft-to-hefld trflnsition detection
We trace the perimeter of the segmented club head and visit each perimeter point in
clockwise order. At each point, we tࢸ two lines, one to a few previous points, and one
to the next few points. Using the angle of both lines, we compute the signed angle
diࢷerence for this point

θdiff = θforward − θback.

The shaft-to-head transition point is then determined as the perimeter point where
θdiff is maximal and the following conditions are also satisࢸed.

• The x-coordinate is not larger than a speciࢸed threshold.

• The x-coordinate changes w.r.t. the previous point on the perimeter.

• |θback| < 20◦

This point is projected to the center of the shaft. The projected point is mapped
back to the original image and used as our detected anchor point. The procedure is
illustrated in Figure 4.17.

(a) Yellow is the selected perimeter point
and red is projected to the shaft center.
Blue points are perimeter points.

...

..

0

.

5

.

10

.

15

.

20

.

25

.

30

.

35

.

0

.

0.5

.

1

.

Perimeter point index

.

. ..θdiff

. ..|θback| < 20
◦

. ..
x-coordinate changed

. ..Selected perimeter point

(b) Example of how the diࢷerent criteria work together to
ndࢸ the transition point.

Figure 4.17: Shaft-to-head transition detection illustration. The perimeter points
shown are the ones with x less than the threshold.

48 4 Methods

4.5 Anchor point interpolfltion

This section deals with diࢷerent ways that we can use the detected anchor points in
each frame to interpolate the position of the anchor point at the impact time. We
consider interpolating in two fundamentally diࢷerent ways. The rstࢸ involves deࢸning
a plane in R

3 on which a swing motion takes place. This is called the swing plane.
The other approach is to consider it purely as an interpolation problem in R

2. When
we refer to a pendulum, we are describing a point moving around a pivot with a
speciࢸed distance between them.

Pendulum with xedࡁ length
During a golf swing, the club head position can be modeled as a circle or pendulum.
We describe the angles in the circle with constant angular acceleration and a speed
discontinuity at impact. The expression for θ thus becomes:

θ(t) =

{
1
2αpre · t

2 + ωpre · t t < 0
1
2αpost · t

2 + ωpost · t t ≥ 0
.

This means that points on the circle will be given by

xcam(t) = K
[
Rsp tsp

]



r · sin(θ(t))
r · cos(θ(t))

0
1




︸ ︷︷ ︸
xsp(t)

,

where tsp is the center of the circle in R
3 andRsp is the rotation matrix describing the

swing plane’s orientation. The radar data includes a ttedࢸ model of this type, which
gives us values for α and ω that we can use. Since we only care about the projection
to the camera we can xࢸ r to any value, as this will be equivalent to scaling tsp. If we
choose r = 1 and can now compute xsp(t) for all frames. Determining Rsp and tsp
is then reduced to solving the Perspective-n-Point (PnP) problem, which has many
popular solutions with available implementations (Bradski 2000; Gao et al. 2003).

Pendulum with qufldrfltic length
The model in the previous section has certain limitations that we are interested in
overcoming. A problem is that the observed anchor point is not physically consistent,
because the club head overlaps the shaft which makes us detect a point that lies
further up on the shaft. See Figure 4.3(a) on page 27 for an example of an overlapping
club head. Because of this, it is a bad assumption to have a constant length of the

4.5 Anchor point interpolation 49

pendulum. This is overcome by letting the radius be a second-degree polynomial.

xcam(t) = K


tsp +Rsp




(
a · θ(t)2 + b · θ(t) + c

)
· sin(θ(t))(

a · θ(t)2 + b · θ(t) + c
)
· cos(θ(t))

0






The rotation and translation have six degrees of freedom, and the polynomial intro-
duces three variables. This leaves the problem with more variables than degrees of
freedom, because the polynomial can scale the circle. This is again equivalent to scal-
ing tsp. One could xࢸ c = 1 if there was interest in having the number of variables
equal the degrees of freedom. In both cases, the model can be ttedࢸ numerically. We
have utilized the Levenberg-Marquardt minimization (Levenberg 1944; Lourakis Jul.
2004; Marquardt 1963). Additionally, we apply RANSAC to make it robust w.r.t.
outliers. Each RANSAC iteration requires four points.

Pendulum with qufldrfltic length flnd xedࡁ swing plflne
The above model can risk producing bad tsࢸ in cases where there are many outliers
present. In order to combat this, we utilize that the radar data contains an estimate
of the normal of the swing plane. This reduces the problem to six degrees of freedom.
Because we only use the normal vector of the swing plane, we need to estimate the
rotation of the plane around the normal vector θ0.

xcam(t) = K


tsp +Rsp




(
a · θ(t)2 + b · θ(t) + c

)
· sin(θ(t) + θ0)(

a · θ(t)2 + b · θ(t) + c
)
· cos(θ(t) + θ0)

0






This can again be solved by Levenberg-Marquardt minimization, but only requires
three points for each RANSAC iteration.

Smoothing spline
We can also interpolate the anchor point using a smoothing spline. This method does
not have a minimum amount of points to ,tࢸ and it is thus diࢺcult to use RANSAC
to tࢸ this model. Because of this we will use the inliers from our best performing
method to tࢸ this model. The smoothing spline has the property that it provides
good tsࢸ locally which might be advantageous. It is ttedࢸ using the built-in Matlab
function fit. The smoothing spline minimizes the expression

p
∑

i

(yi − s(xi))
2
+ (1 + p)

∫ (
d2s

dx2

)2

dx,

where p is a smoothing parameter chosen automatically.

50 4 Methods

Interpolfltion of shflft flngle
Using the inliers found using the former models we interpolate the shaft angle to the
time of impact using a polynomial ttedࢸ to the computed θshaft in each frame.

4.6 Pose estimfltion flt the time of impflct
Our goal is to determine where the on the club face the ball is hit. In order to do this,
it is important to know the pose of the club head at impact time. In this section, we
describe how to determine this pose and how we utilize it. Throughout the section,
we will continually use various golf terms. We refer the reader to Section 2.3 on page 4
for an overview of these terms.

Correction of bflll center flnd rfldius
The center of the circle found in Section 4.2 is not the projection of the true center
ptrue of the golf ball but simply the center of the ball pixels, see Figure 4.18 on the
next page. The angles θtrue,x and θtrue,y that ptrue has with the principal point can
be computed as the mean angles

θtrue,x =
θ1,x + θ2,x

2
, θtrue,y =

θ1,y + θ2,y

2
,

where θ1,x and θ2,x are the angles between the projection of the left and right side
of the ball with the principal point respectively, and similarly for θ1,y and θ2,y. We
calculate these as

θ1,x = tan−1

(
(px − rpx)− ppx

f

)
, θ2,x = tan−1

(
(px + rpx)− ppx

f

)

θ1,y = tan−1

(
(py − rpx)− ppy

f

)
, θ2,y = tan−1

(
(py + rpx)− ppy

f

)
,

where (px, py) and rpx are the detected center and radius of the circle, (ppx, ppy) is the
principal point and f is the focal length. Using θtrue,x and θtrue,y we can construct
the point

c =



f tan(θc,x)
f tan(θc,y)

f




which reprojects to the same point ptrue as the center of the golf ball. I.e.

ptrue = s



ptrue,x
ptrue,y

1


 = Kc

where K is the camera matrix.

4.6 Pose estimation at the time of impact 51

pp
x

θ
1;x

θ
2;x

θ
true;xf

p
x

p
true;x

x

z

Figure 4.18: Overdrawn illustration of the top view of the projection of the golf ball
to the image plane. The true ball center projects to ptrue,x, px is the
x-coordinate of the center of the detected circle, θ1,x, θ2,x and θtrue,x is
the angles between the the left side, right side and center of the ball, ppx
is the x-coordinate of the principal point and f is the focal length.

Bflll rfldius
The detected radius of the golf ball is also skewed due to the camera perspective.
If a ball is kept at the same depth but moved sideways the detected radius will
become larger, but since the ball is moved further away from the camera the radius
should, in fact, become smaller. Similarly, when the ball is moved vertically. If rm
is the measured radius in pixels and dx = px − ptruex , dy = py − ptruey are x and
y-coordinates of the distance between the detected ball center and the projection of
the true ball center we can calculate a more accurate radius of the ball by

rpx =
cos(θtrue,x)(rm + dx) + cos(θtrue,y)(rm + dy)

2
.

Figure 4.19 on the following page illustrates the rstࢸ term of the numerator. Note
that this is just an approximation of the radius, and that the ball, in reality, should

52 4 Methods

have two diࢷerent radii in the vertical and horizontal direction, but it is a better
approximation than the measured one.

x

z

r
m

d
x

θ
true;x

Figure 4.19: Illustration of the measured ball radius. The purple point is the center
of the ball, the red point is the center of the projected circle, dx is the
distance between them, rm is the measured radius and θtrue,x is the
angle computed in the previous section.

True impflct point
The golf ball is not hit at ptrue but at the projection of the point where the club, which
is assumed to be ,atࢹ is tangent to the ball. The radar data include a dynamic face
angle and a dynamic loft angle. These are deࢸned in the radars coordinate system,
but can easily be transformed to the camera’s coordinate system using our camera
calibration. In spherical coordinates the dynamic loft angle θloft,d corresponds to the
elevation and the dynamic lie angle θlie,d corresponds to the azimuth angle, hence
they deࢸne a normal vector nclub to the hitting plane of the club at impact time. If
we deࢸne

Rlf = RcamRy(θface,d)Rx(θloft,d)

= Rcam




cos(θface,d) 0 sin(θface,d)
0 1 0

− sin(θface,d) 0 cos(θface,d)





1 0 0
0 cos(θloft,d) − sin(θloft,d)
0 sin(θloft,d) cos(θloft,d)


 ,

then the normal vector is

nclub = Rlf



0
0
1


 = Rcam



sin(θface,d) cos(θloft,d))

− sin(θloft,d)
cos(θface,d) cos(θloft,d))


 .

4.6 Pose estimation at the time of impact 53

The true impact point pimpact is the point on the ball which has normal −nclub

projected to the camera hence

pimpact = K (c− rpxnclub) .

A couple of examples are shown in Figure 4.20 on page 55.

Computing dynflmic lie flngle
To fully determine the pose of the golf club at impact time we need to estimate θlie,d.
This angle describes how much the club is rotated around nclub. Using the known
variables θface,d, θloft,d, θloft,s, θlie,s and the interpolated shaft angle θshaft in the
image plane we can set up an equation which we can solve for θlie,d. We utilize that
we can observe the club shaft which is xedࢸ to the head. When the club is in neutral
position, the direction vector of the shaft in R

3 is given by

vshaft,n =



− cos(θlie,s)
− sin(θlie,s)

0


 .

If we rotate the club around the x-axis such that the club face has normal equal to
the z-axis we get

vshaft,r = Rx(−θloft,s)vshaft,n

=



1 0 0
0 cos(θloft,s) sin(θloft,s)
0 − sin(θloft,s) cos(θloft,s)





− cos(θlie,s)
− sin(θlie,s)

0




=




− cos(θlie,s)
− cos(θloft,s) sin(θlie,s)
sin(θloft,s) sin(θlie,s)


 .

If the interpolated anchor point is (pap,x, pap,y) then we can deࢸne a point in R
3 that

projects to our anchor point.

tap =



pap,x − ppx
pap,y − ppy

f




Using the rotated direction vector of the club shaft vshaft,r and tap we can compute
what shaft angle a given dynamic lie will result in. We use that a lie angle is deࢸned
as a rotation around the normal vector of the club face, and that Rlf rotates the
z-axis to the normal of the club face in camera coordinates.

pshaft(θlie,d) = K
[
RlfRz(θlie,d) tap

] [vshaft,r
1

]

54 4 Methods

We thus have a point on the shaft in the image plane as a function of the dynamic lie
θlie,d. From this, we obtain the equation

θshaft = tan−1

(
pshaft,x(θlie,d)− pap,x
pshaft,y(θlie,d)− pap,y

)
,

where θshaft is the interpolated shaft angle in the image plane. We solve this equation
for θlie,d numerically. Note that this angle does not depend on the depth at which
tap is created (see Appendix A.2 on page 87).

Hitting plflne homogrflphy
The dynamic lie, loft, and face angles uniquely determine the pose of the golf club at
impact time. We deࢸne the hitting plane as the plane which has normal nclub and is
rotated around this normal with θlie,d. Examples of diࢷerent dynamic lies are shown
in Figure 4.21 on page 56.
We consider the following points in R

3,

b1 =



rpx
rpx
−rpx


 , b2 =



−rpx
rpx
−rpx


 , b3 =



rpx
−rpx
−rpx


 , b4 =



−rpx
−rpx
−rpx


 .

We transform these to the hitting plane and project them to the camera by

ppx,i = K
[
RlfRz(θlie,d) c

] [bi

1

]
, i ∈ {1, 2, 3, 4}

We make the four corresponding points

pcm,1 =



−rcm
rcm
1


 , pcm,2 =



rcm
rcm
1


 , pcm,3 =



−rcm
−rcm
1


 , pcm,4 =



rcm
−rcm
1




Using these four point correspondences we compute a homography H such that

pcm,i = Hppx,i, i ∈ {1, 2, 3, 4}

With the assumption that the interpolated anchor point pap lies in the hitting plane we
can now compute a vector in cm from the impact point to pap using the homography.
We get this from

vimpact→ap = Hpap,

where we note that vimpact→ap is in homogeneous coordinates.

4.6 Pose estimation at the time of impact 55

(a) Example of pre-impact frame.

(b) θface,d = θloft,d = 0◦. (c) θface,d = 20◦, θloft,d = 40◦.

Figure 4.20: Two examples of the true impact point for diࢷerent nclub’s. The yellow
point is the center of the detected circle and the intersection of lines is the
true impact point. Note that these only coincide for θface,d = θloft,d = 0◦

when the center is equal to the principal point due to the perspective of
the camera.

56 4 Methods

(a) θlie,d = −15◦ (b) θlie,d = 0◦ (c) θlie,d = 30◦

Figure 4.21: Three examples of hitting planes with diࢷerent dynamic lies. In all three
examples θloft,d = 40◦, θface,d = 0◦. The width of the hitting planes are
2rpx and the height is 4

3rpx.

4.7 Estimating impact point 57

4.7 Estimflting impflct point
From the previous section we obtain the vector from the impact point to the anchor
point vimpact→ap. The vector vimpact from a speciࢸed origin on the golf club to the
true impact point has been annotated. These are shown as the green and blue vectors
in Figure 4.22. We can add them to obtain

vap = vimpact + vimpact→ap,

which is vector going from the origin on the golf club to the anchor point. This vector
is shown as the red vector in Figure 4.22. If we can compute vimpact→ap without
error, vap should be constant for a given golf club. We can however not compute
vimpact→ap without error and vap should have an almost identical error since vimpact

is expected to be accurate. Variations in vap over all strokes for a given club thus
describe how accurately we are able to determine vimpact→ap.

Figure 4.22: Illustration showing the vectors vimpact→ap, vimpact and vap as the green,
blue and red vectors respectively. The blue circle is an outline of the
impact of the ball, and the red circle is the anchor point.

We assume that each computed vap,i is the sum of a true anchor point vap,true for
the given club, a potential bias term β and a Gaussian distributed error ϵi ∼ N (0,σ).
I.e.

vap,i = vap,true + β + ϵi

= vap,observed + ϵi.

Hence, vap,i ∼ N (vap,observed,σ). Given enough strokes, we can compute the maxi-
mum likelihood estimate of vap,observed as

ṽap,observed =
1

n

n∑

i=1

vap,i.

58 4 Methods

Finally, the computed impact position is calculated as

vimpact = ṽap,observed − vimpact→ap.

Since ṽap,observed is a constant for a speciࢸc club, we see that the error distribution
of vimpact is the same as for −vimpact→ap.

CHAPTER 5
Results

5.1 Cflmerfl cfllibrfltion

Dfltflset 1
The root mean square error (RMSE) between the projected ball positions from the
radar and the detected positions is 7.82 pixels.

Dfltflset 2
The reprojection using the estimated internal and external parameters for one of the
four frames can be seen in Figure 5.1. RMSE of all the reprojected points in the four
image sets is 0.38 pixels.

(a) Radar internal camera. (b) DS2n (c) DS2z

Figure 5.1: Reprojection of checkerboard points in DS2 with nalࢸ camera calibration.

5.2 Bflll position
In Table 5.2 on the next page, we present how well our two diࢷerent methods for
initial ball detection perform, compared to manual annotations of the initial ball. We
have not used stroke 40 from DS1 as the radar data for this stroke are imprecise. In
order to understand the scale of one pixel, Table 5.4 on page 61 gives an overview of
how big the balls in each dataset approximately are. Furthermore, Figure 5.3 on the

60 5 Results

next page shows visually how the detected positions with the Hough method diࢷer
from the annotations.

Table 5.2: Initial ball detection compared with annotations. Unit is pixels, µ is mean
and σ is standard deviation. The inlier threshold for the RANSAC method
is 0.5 pixels.

Position Radius
Dataset RMSE µ∆x µ∆y σ∆x σ∆y RMSE µ∆r σ∆r

Hough
DS1† 0.46 -0.17 -0.16 0.26 0.31 0.74 -0.67 0.32
DS2n 0.76 0.36 0.05 0.40 0.54 0.51 -0.10 0.50
DS2z 0.81 0.26 0.09 0.36 0.68 0.54 0.10 0.54
RANSAC
DS1† 1.13 -0.24 -0.25 0.62 0.89 1.06 -0.93 0.52
DS2n 0.84 0.13 -0.17 0.39 0.72 0.67 -0.39 0.55
DS2z 1.04 0.17 0.03 0.38 0.96 0.63 -0.11 0.62
†Excluding stroke 40.

-3 -2 -1 1 2 3

x

-3

-2

-1

1

2

3

y

(a) DS1

-3 -2 -1 1 2 3

x

-3

-2

-1

1

2

3

y

(b) DS2n

-3 -2 -1 1 2 3

x

-3

-2

-1

1

2

3

y

(c) DS2z

Figure 5.3: Diࢷerences of the initial ball position between annotations and Hough
result.

Inlier threshold for RANSAC
The RANSAC algorithm requires a threshold to determine which points are inliers
and outliers for a given model. We show the RMSE of the detected ball position over
all three datasets as a function of the threshold in Figure 5.5 on the facing page.

5.3 Impact time 61

Table 5.4: Average ball radius in pixels from annotations.

DS1 DS2n DS2z
µr 7.4 9.3 13.3

.....
0

.
0.5

.
1

.
1.5

.
2

.
2.5

.
3

.
3.5

.
4

.0 .

5

.

10

.

RANSAC threshold

.

RM
SE

[p
ix
els

]

Figure 5.5: RMSE between annotations and detected ball positions as a function of
the inlier threshold used for RANSAC.

5.3 Impflct time
Using the annotation of the rstࢸ visible ball after impact we can estimate how well
our impact time model works. This is done by estimating the frame of the annotation
from its position and the ball track. If the annotated frame is also in the track, the
track in this frame is omitted. Figure 5.7(a) on page 63 shows the RMSEs of the
diࢷerent methods for each dataset. These numbers are very high because of a few
outliers as illustrated in Figure 5.7(b) on page 63. Because of this, we also present a
combined RMSE for all datasets, where strokes that have an absolute error of more
than one frame at 20 ttedࢸ points with either method have been omitted. These
strokes are shown in Table 5.6. The result is shown in Figure 5.7(c) on page 63.

Table 5.6: Strokes that have an absolute error of more than one frame at 20 ttedࢸ
points with either linear or quadratic, both nonlinearly optimized.

Dataset Strokes
DS1 None
DS2n 34, 59
DS2z 17, 38, 49, 58

62 5 Results

Impflct of missing frflmes in bflll trflcks
The ball is not always tracked immediately due to various causes e.g. the club being in
front of it. For each stroke in the three datasets, we have compared the frame numbers
at which the ball tracks start with the impact frame rounded up. Figure 5.8(a) on
page 64 shows the distributions of these diࢷerences for the three datasets. Using only
the strokes that have zero or one frame diࢷerence we calculate how the RMSE worsens
when we remove points from the tracks. We remove points from the beginning of the
tracks and compute the frame number of the annotated rstࢸ visible post-impact ball
using the linear model with non-linearly optimized parameters. Comparing with the
true frame number we can compute the RMSE of the used strokes. Figure 5.8(b) on
page 64 shows the RMSEs as a function of how many points are removed for the three
datasets.

5.3 Impact time 63

.....
10

.
20

.
30

.
40

.0 .

0.5

.

1

.

1.5

.
points in fit

.

RM
SE

[fr
am

es
]

.....
10

.
20

.
30

.
40

.0 .

0.5

.

1

.

1.5

.
points in fit

.....
10

.
20

.
30

.
40

.0 .

0.5

.

1

.

1.5

.
points in fit

(a) RMSE of linear (blue) and quadratic (red) impact time methods. Both methods are nonlinearly
optimized. From left DS1, DS2n and DS2z.

.....
20

.
40

.0 .
2

.

4

.

6

.

8

.
Stroke

.

A
bs

di
ffe

re
nc

e
[fr

am
es
]

.....
20

.
40

.
60

.0 .
2

.

4

.

6

.

8

.
Stroke

.....
20

.
40

.
60

.0 .
2

.

4

.

6

.

8

.
Stroke

(b) Absolute frame diࢷerence for each stroke with 20 ttedࢸ points for linear (blue) and quadratic (red).
Both methods are nonlinearly optimized. From left DS1, DS2n and DS2z.

.....
5

.
10

.
15

.
20

.
25

.
30

.
35

.
40

.0 .

0.2

.

0.4

.

0.6

.

points in fit

.

RM
SE

[fr
am

es
]

.

. ..Linear-L

. ..Linear-NL

. ..Quadratic-L

. ..Quadratic-NL

(c) RMSE on all strokes except the ones in Table 5.6 on page 61. L means Linear and NL nonlinear.

Figure 5.7: Results on impact time computations.

64 5 Results

0 2 4

0

10

20

30

Frames not tracked

#
of

st
ro
ke

s

0 5 10 15

0

10

20

30

Frames not tracked
0 5 10 15

0

10

20

30

Frames not tracked

(a) Histograms showing the distributions of how many frames immediately after impact that has not
been tracked for each of the three datasets.

0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

initial points excluded in fit

RM
SE

[fr
am

es
]

DS1
DS2n
DS2z

(b) RMSE as a function of number of points excluded from the ball tracks. Only those strokes that have
tracked the second frame immediately after impact have been used in this graph. The RMSEs are calculated
with respect to the rstࢸ frame after impact, where the ball has been annotated.

Figure 5.8: Results that relate missing frames in ball tracks to the error in impact
time.

5.4 Anchor point detection 65

5.4 Anchor point detection
Figure 5.9 shows the result of our club head segmentation and anchor point detection
in veࢸ randomly selected cases.

Figure 5.9: Images showing the result of our club head segmentation with their respec-
tive detected anchor points. Top row: color image, middle row: diࢷerence
image, bottom row: segmentation.

Empiricfll probflbility density functions for diࡀerence imflges
The empirical densities computed from ten annotated diࢷerence images, that have
been used for the modeling of MRFs are shown in Figure 5.10 on the next page.

66 5 Results

.....
0

.
0.1

.
0.2

.
0.3

.
0.4

.
0.5

.
0.6

.
0.7

.
0.8

.
0.9

.
1

.0 .

0.1

.

0.2

.

0.3

.

Intensity

.

Pr
ob

ab
ili
ty

.

. ..Background density

. ..Foreground density

Figure 5.10: Empirical foreground and background PDFs from annotated diࢷerence
images.

5.5 Anchor point interpolfltion
In our datasets, there are various elements of missing data that render strokes unsuit-
able for evaluating our method on. Table 5.11 shows these strokes. Additionally, in
the video of stroke 20 in DS2z, there is a duplicated frame near impact. Because of
this, we have not used that video.

Table 5.11: Strokes with missing data. Total of thirteen strokes from DS1 and veࢸ
strokes from DS2.

Missing DS1 DS2
Ground truth 28, 40, 45, 54 46
Club radar data 13, 40 24, 32, 45
Club radar post
impact speed

43, 44, 45, 46, 47,
48, 49, 52, 54, 55

9

When ttingࢸ the swing models, we have used the eight frames before impact and the
ten after, yielding a total of eighteen data points.
In order to evaluate the anchor point interpolation method, we use the annotated
anchor point before impact and tࢸ the models without the anchor point detected in
this frame. Figure 5.12 on the next page shows the RMSE for each of our interpolation
methods for varying RANSAC thresholds. Because the best performing model is

5.5 Anchor point interpolation 67

the pendulum with quadratic length, we have used the inliers from this to tࢸ the
smoothing spline.
We have also attempted ttingࢸ to fewer frames than eighteen by removing n frames
from both ends of the interval. The result of this is shown in Figure 5.14 on page 69.

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

RANSAC threshold

RM
SE

[p
ix
els

]

Pendulum with fixed length
Pendulum with quadratic length
Pendulum with quadratic length and fixed swing plane
Smoothing spline

Figure 5.12: RMSEs for interpolated anchor point compared to annotation as a func-
tion of RANSAC threshold.

An example of a model ttedࢸ to detected anchor points is shown in Figure 5.13 on
the next page

Interpolfltion of shflft flngle
Using the inliers of the pendulum with quadratic length at a threshold of twelve pixels
we can estimate the value of θshaft in the last frame before impact. We compare the
ttedࢸ value against the computed value in the frame. Because the tࢸ is computed
using the same inliers, naturally the value of θshaft in the frame predicted is not used.
The result of predicting θshaft for diࢷerent degrees of the polynomial can be seen in
Figure 5.15 on page 69

68 5 Results

Figure 5.13: Example of a swing. Detected anchor points are shown as dots. Inliers
w.r.t. the ttedࢸ pendulum with quadratic length are shown as green
points, while outliers are red. The pink line is the ttedࢸ smoothing
spline.

5.5 Anchor point interpolation 69

.....
0

.
1

.
2

.
3

.
4

.2 .

4

.

6

.

8

.
Number of frames trimmed from each end

.

RM
SE

[p
ix
els

]

.

. ..Pendulum with fixed length

. ..Pendulum with quadratic length

. ..Pendulum with quadratic length and fixed swing plane

Figure 5.14: RMSE as a function of number of frame pairs not used out of the eighteen
frames.

.....
2

.
4

.
6

.
8

.
10

.1 .

2

.

3

.

Polynomial degree

.

RM
SE

[d
eg
re
es
]

Figure 5.15: Degree of polynomial to predict θshaft.

70 5 Results

5.6 Anchor point vectors
Table 5.16 shows standard deviations in the x- and y-directions for vap over all possible
strokes. The mean has been subtracted for each club because we expect diࢷerent clubs
to have diࢷerent anchor points. When we refer to “each club” it is in the context of
both club and camera angle, which implies that we treat the videos from DS2n and
DS2z as separate observations on diࢷerent clubs. The results are shown for the two
best performing methods for anchor point interpolation with 12 pixels as the RANSAC
threshold, the linear impact time method with non-linearly optimized parameters and
the Hough method for locating the initial ball. The check-marks indicate whether an
angle has been taken into account in computing the hitting plane homography. If not
used, the value is set to 0◦. A stroke has been removed since vimpact→ap was longer
than 20 cm, which is much longer than the diagonal of the golf clubs used. The rest
of the vectors are shorter than 10 cm. Tables 5.17 to 5.19 on this page and on the
next page show the errors for each club in each dataset with the smoothing spline
method using only lie angle for the hitting plane homography.

Table 5.16: Standard deviations on vap for the two best-performing anchor point
interpolation methods, with diࢷerent angles considered for the hitting
plane homography. Means have been subtracted on a for each club. The
unit is mm.

M1 M2 M3 M4 M5
Loft angle
Face angle
Lie angle
Pendulum with qufldrfltic length

σx 5.19 5.22 5.07 5.14 4.94
σy 5.73 5.87 5.56 5.88 5.79

Smoothing spline
σx 4.55 4.63 4.18 4.26 4.30
σy 5.34 5.53 5.20 5.66 5.51

Table 5.17: Standard deviations on vap for each club in DS1 using M3. The unit is
mm.

All Driver 1 Driver 2 Iron 1 Wedge 1†

σx 2.59 2.61 2.59 2.08 3.77
σy 4.35 3.30 2.79 4.02 9.73
†Computed from only three strokes due to missing radar data.

5.6 Anchor point vectors 71

Table 5.18: Standard deviations on vap for each club in DS2n using M3. The unit is
mm.

All Driver 1 Driver 3 Iron 2 Wedge 2
σx 5.38 2.83 9.08 1.67 4.14
σy 7.21 4.29 13.52 3.35 4.14

Table 5.19: Standard deviations on vap for each club in DS2z using M3. The unit is
mm.

All Driver 1 Driver 3 Iron 2 Wedge 2
σx 5.24 6.98 4.95 1.81 3.53
σy 4.58 4.94 5.39 4.24 4.06

Anchor point clouds
For each stroke, we perform our method on we get a sample of vap as explained in
Section 4.7 on page 57. These anchor points can be plotted in a scatter plot, which
is what we mean when we refer to the anchor point cloud. In Figure 5.20 on page 73
computed vap,is are shown on top of an image corresponding to their respective club
types. The method used is the smoothing spline method and M3 from Table 5.16
on page 70. Note that the chosen images are randomly chosen examples (among the
images that are focused) and the location of the impact ball has nothing to do with
the anchor point cloud. Similar plots for other clubs and used angles can be seen in
Appendix B on page 89.
Figure 5.21 on page 74 shows the vap,is for a wedge if we include the loft angle, i.e.
M4. Table 5.22 shows the standard deviations for the wedges in the datasets if M4 is
used.

Table 5.22: Standard deviations on vap for the wedges in the datasets using M4, i.e.
including the loft angle. The unit is mm.

DS1 Wedge 1 DS2n Wedge 2 DS2z Wedge 2
σx 5.03 4.34 3.81
σy 9.69 6.73 5.69

Using only every second flnchor point
We have also computed results where we have only used every second anchor point.
These can be seen in Table 5.23 on the following page. We have removed the same
stroke as in the previous section, and two additional strokes that produced vimpact→ap

vectors longer than 10 cm.

72 5 Results

Table 5.23: Standard deviations on vap for the smoothing spline, where only every
second anchor point has been used. Means have been subtracted for each
club. Methods are as in Table 5.16 on page 70.

M1 M2 M3 M4 M5
Smoothing spline
σx 5.47 5.53 5.13 5.24 5.22
σy 6.37 6.57 6.40 6.86 6.79

5.6 Anchor point vectors 73

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

Figure 5.20: Computed vap,is shown on top of the corresponding club. The red points
are the anchor point clouds, while the green points are the means. From
top to bottom: DS1 Driver 1, DS2z Iron 2 and DS2n Wedge 2. The
method is smoothing spline and M3. Units are cm.

74 5 Results

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

Figure 5.21: Computed vap,is shown on top DS2n Wedge 2 in red. The green point
is the mean. Units are cm.

5.7 Impact position 75

5.7 Impflct position
Figure 5.24 on the next page shows predicted impact positions vimpact on eighteen
randomly selected strokes from our datasets. The anchor point used is ṽap,observed
computed for the speciࢸc club and speciࢸc camera. The anchor point interpolation is
done with the smoothing spline method. For drivers and irons, we have only used the
dynamic lie angle, and for wedges, we have also included the dynamic loft angle in
the hitting plane homography. As described in Section 4.7 on page 57 the horizontal
and vertical errors are the same as the errors for vimpact→ap, which are found in
Section 5.6 on page 70.

76 5 Results

Figure 5.24: Random selection of predicted impact locations. Red circles are the
annotated positions and blue circles are the predicted ones. The red dot
is the used anchor point.

CHAPTER 6
Discussion

6.1 Project-wide considerfltions

Choice of cflmerfl
In this project, we have chosen to use an iPhone in a single camera setup. This has
been done for the following reasons: Firstly it is an accessible camera that a lot of
people already have in their pockets, and is still able to produce videos at 240 FPS
at a reasonable resolution. Secondly, the radar can communicate with it, which made
it easy to incorporate with the radar data. We could have chosen a less accessible
high-FPS camera or a multiple camera setup. This would however not be a good
solution when considering an end user. If the results of the project are used in a
product, it would be more expensive and possibly more complicated to set up.

Globfllly ttedࡁ motion model
In our project, we have utilized the approach of detecting the anchor point individually
in each frame and afterwards ttingࢸ a model to all of our detections. The alternative
to this approach would be to detect the anchor point in one or more frames, and use
these frames to guide the method in subsequent frames to where we expect to ndࢸ
the anchor point. This could be done with methods such as Kalman .lteringࢸ
Furthermore, having the majority of the computations begin independent on a frame-
basis allows for easier parallelization in an implementation.
To improve the estimate of the club head trajectory we could recompute the anchor
points classiࢸed as outliers using the ttedࢸ model as a guide.

Opticfll distortion
We have chosen to perform our method on distorted frames. This is more computa-
tionally intensive and would typically not be done in a commercial product. In such
a case computations would be done on distorted frames, and only the results of the
computation such as points and angles would be corrected for optical distortion. It is
however not entirely trivial to undistort an angle or a radius, and the expected result
is not clearly deࢸned. The reason for choosing to execute our method on undistorted
frames was that we wanted to see what was possible with the data under optimal
circumstances and computational complexity has thus not been a big concern.

78 6 Discussion

Assumption of fltnessࡂ for drivers
In our methods, we have assumed that club heads are .atࢹ For wedges and irons, this
is a correct assumption, but it does not hold for drivers, as they are slightly curved
as mentioned in Section 2.3 on page 4. This causes problems in our method where
we use the angles of the club face measured by the radar. That is because the radar
is only able to measure the normal of the club face at the point of impact and not
the pose of the entire club face. I.e., if a ball is hit close to the toe, the face angle
be pointing more towards the golf player than it should. In order to correct for these
eࢷects, we need to know the local normal on the club face where the ball has been
hit. The latter can be approximated with our method, which in turn implies that
this correction could be implemented with our existing method. This could be done
by computing the impact location and reࢸning the face angles iteratively.

Rolling shutter
We have not compensated for rolling shutter in our project. If the iPhone is oriented
in portrait mode, the sensor will roll from right to left. This will only cause the
impact time to be found with the constant bias from the column of the initial ball
position as the ball ightࢹ is primarily in the y-direction. Assuming the model ttedࢸ
to the anchor point describes the observed pixel locations correctly, this model will
implicitly include the rolling shutter. When the tࢸ is evaluated at impact time, the
bias will be present in the impact time. However, the tࢸ will have been ttedࢸ to points
near impact that also have the same bias in their measured times. Thus, because the
anchor point and initial ball position are close together in the x-direction, rolling
shutter will have limited eࢷect. We expect the worst case distance between these
two to be 100 pixels, which if the rolling shutter takes 100% of a frame, the error
committed will be approximately 0.6 milliseconds.
This will cause an error in the time that we input to the anchor point model .tࢸ
This is disregarding that rolling shutter can also change the measured θshaft, but we
expect this to be even less signiࢸcant.

6.2 Cflmerfl cfllibrfltion

Dfltflset 1
An RMSE 7.82 pixels is not bad in this case because we are comparing pixel data
with radar data, which is not very accurate in the x − y direction. Because of that,
this error is reasonable.

Dfltflset 2
The RMSE of 0.38 pixels is low and very acceptable, which mean that the only error
in our calibration w.r.t. the radar’s coordinate system is the same as the internal

6.3 Ball position 79

camera has.

6.3 Bflll position
From Table 5.2 on page 60, it is evident that we are able to locate the golf ball success-
fully using both the Hough transform and RANSAC. The Hough transform performs
slightly better than RANSAC, particularly for DS1. We believe this slight diࢷerence
is because of the Hough transform implementation which utilizes the gradient direc-
tion and merges several close detected centers into one, which the RANSAC method
does not.
The balls that are we are trying to locate are small, as Table 5.4 on page 61 shows.
This implies that the annotations are bound to include some errors. In this light we
ndࢸ these results very satisfactory.
Figure 5.5 on page 61 shows that the RANSAC method is not very sensitive to the
choice of threshold with which we regard a point as inlier for a given ttedࢸ model.
All values between 0.1 and 3, seems to perform equally well.

Inࡂuence on subsequent results
The initial position of the golf ball inࢹuences many of the later results, which is why
it is important to detect it precisely.

Inࡂuence on impflct time
The golf balls move approximately 35 pixels per frame right after impact. This means
that a detection error of 1 pixel on the ball position will introduce an error in the
computed impact of approximately 2.9% of a frame. At 240 FPS this corresponds to
approximately 0.1 milliseconds. Compared with the contact time between club and
ball which is approximately 0.5 milliseconds (Cochran and Stobbs 1968), the sub-pixel
errors on the position that we have are negligible, in the context of impact time.
Errors in the detection will also inࢹuence the vector vimpact→ap. If rmm and rpx is
the radius of the ball in mm and pixels then a one-pixel diࢷerence in the detected
radius will result in a

rmm

rpx
− rmm

rpx+1
rmm

rpx

= 1−
rpx

rpx+1
,

change in the mm per pixel factor. For DS1 this percentage is 11.9%, for DS2n 9.7%
and for DS2z 7.0% using the average ball radii found in Table 5.4 on page 61. Hence,
if the camera is placed closer to the ball, whereby we obtain more pixels per mm, the
errors in the detected radius become less inࢹuential. From Table 5.2 on page 60 we
furthermore see that we predict the radius with greater accuracy for DS2n and DS2z.
The higher RMSE for DS1 is primarily due to a bias, but that bias might just as well
be coming from the annotations.

80 6 Discussion

Inࡂuence on impflct vector

Errors in the position of the ball also aࢷect the vimpact→ap vector. If the hitting
plane at impact time is parallel with the image plane (θface,d = θloft,d = 0) then a
one-pixel detection error on the position aࢷects vimpact→ap with

1 pixel · rmm

rpx
,

if we do not consider the position of the camera relative to the ball. The golf ball
has radius 21.35 mm and using the average radii we ndࢸ that this error is 2.9 mm,
2.3 mm and 1.6 mm for the three datasets. The assumption that the hitting plane
is parallel with the image plane rarely holds. Generally θloft,d is much larger than
θface,d which is close to zero. A better size estimate of the error in the y-direction is

errory,mm

cos(θloft,d)
,

where errory,mm is the detection error in the y-direction. Suppose there was only
error in the y-direction and θloft,d = 45◦, which is a typical value for the irons in our
datasets, then adjusting the former found error estimates we get 4.1 mm, 3.3 mm and
2.3 mm for DS1, DS2n and DS2z respectively. These values show that detecting the
correct position is very important as small errors correspond to relatively large errors
in vimpact→ap. If the camera is closer to the ball we see that the error in the detected
position has less inࢹuence on vimpact→ap. However, the position is also more error
prone when the ball is larger.

6.4 Impflct time
Figure 5.7 on page 63 shows the RMSEs on the impact time errors for each of the
three datasets, as functions of the number of points in the track we have used to tࢸ
the model. We stress that this is not the true error since we have no ground truth, but
only an estimate of the magnitude of the error, based on annotations in the frames
after impact where we do know the true time.

On all three datasets, the method based on a linear ightࢹ assumption performs better
than the one with a quadratic term included as seen in Figure 5.7(a) on page 63. For
DS2z general performance of the quadratic model is greatly aࢷected by a few errors
as seen in Figure 5.7(b) on page 63. Using the approximate impact time from the
radar data one could detect these as outliers and thereby render the stroke unusable.
If we remove all strokes where the error is greater than 1 frame, which are the ones
we expect to be able to detect with the radar data, we get the RMSEs shown in
Figure 5.7(c) on page 63. These RMSEs are calculated over all three datasets. We
expect that the result of this graph is how our methods generalize to new data given
that outliers can be detected and removed using radar data.

6.4 Impact time 81

For the linear model, there is not much gain by non-linearly optimizing the parameters.
Only for 30 ttedࢸ points and above we get a small boost, and it even gets a little worse
for fewer points, but we deem this to be a coincidence as the tࢸ has an objectively lower
error w.r.t. the points the model is ttedࢸ on. The linear model starts to become worse
when we use more points in the ,tࢸ which was anticipated. For the quadratic model,
the results are a slightly better with non-linearly optimized parameters, specially
when few points are used to tࢸ the model. From fteenࢸ points and above the beneࢸt
is very small. The graph shows that the linear model gives better results than the
quadratic model. We ndࢸ this surprising.

Because we are looking in a very short time span, the eࢷect that gravity has on
the ightࢹ path is limited. Thus, the quadratic part of the model might also describe
other factors than gravity. Since the tracked positions of the ball are bound to include
some error, the quadratic term might make the model better at ttingࢸ to these errors,
which will not generalize for points outside the track. We believe that this is part of
the explanation as to why the quadratic model has worse performance. Furthermore,
the linear model uses the distance to the initial ball instead of using px(t) and py(t)
directly, as the quadratic model does. We believe that this makes the linear model
more robust towards small errors in the detected ball positions.

The linear model with non-linearly optimized parameters has the lowest RMSE of
0.12 frames when using 28 points to tࢸ the model, however, there is little diࢷerence
in the range 20 to 40 points. The lowest RMSE for the quadratic model with non-
linearly optimized parameters is 0.15 frames when using 18 points for the .tࢸ This
model is more sensitive to the number of points ttedࢸ than the linear model. At 240
FPS these values correspond to 0.5 milliseconds and 0.63 milliseconds. We ndࢸ this
acceptable when considering the approximate contact time between club and ball of
0.5 milliseconds.

Sensitivity to time before rstࡁ trflcked bflll flfter impflct

The computed impact time is sensitive to how fast we are able to start tracking the
ball after impact. Figure 5.8(b) on page 64 shows how the impact frame is aࢷected
if we are not able to track the ball immediately after impact. Clearly, the computed
impact time becomes less precise, if we have not tracked the ball in the beginning of
the trajectory. From Figure 5.8(a) on page 64 we see that we are not always able to
track the ball immediately after impact. Because of this, we can expect the impact
time to be less accurate for these strokes. We see that in DS2n and DS2z tracks start
later than in DS1. This is because the cameras than in DS2n and DS2z are placed
closer to the ground than in DS1, as shown in Figure 3.2 on page 19, resulting in the
golf club blocking the ball for multiple frames in some cases.

82 6 Discussion

6.5 Anchor point detection
From Figure 5.9 on page 65 we see that our method to detect the anchor point
works well in the presented cases. In column one and three, we can tell by the
thinness of the shaft in the segmentation, that the shaft is only present because we
have forced the expected shaft line to be segmented as club. Even though we have
detected the orientation of the shaft poorly in the rstࢸ case, we have still found a
relatively satisfactory anchor point, but this could be a coincidence. The fthࢸ case
is a challenging case with the club head being diࢺcult to see in both the color and
diࢷerence image, but both the segmentation and anchor point detection have produced
satisfactory results.

Empiricfll probflbility density functions for diࡀerence imflges
We expect that the empirical PDFs from the annotated diࢷerence images will gener-
alize to new data, as diࢷerence values should have the same range. This is implicitly
shown by them working well on our data, as the annotated diࢷerence images only
come from DS1. The assumed independence between these and the GMMs for the
color values is most likely not true. However, it is a simple method of combining infor-
mation from both the diࢷerence data and color data, which seems to work well.

6.6 Anchor point interpolfltion
We have tried out various models that are able to describe the motion of the anchor
point. We have omitted some strokes from the model ttingࢸ because of missing data.
This is not a problem as we have not removed the strokes because of bad results, but
only because our method was not able to run on these strokes.

From Figure 5.12 on page 67 we can see that the best performing physical model is the
pendulum with quadratic length. Because of this, we use the inliers from this to tࢸ
the smoothing spline, which gives a better result. This is not entirely surprising as the
smoothing spline is a good tࢸ locally, so points far from the impact have little eࢷect
on it. The worst performing model is the pendulum with quadratic length and xedࢸ
swing plane. This could be caused by inaccuracies in the swing plane measured by the
radar or a not suࢺciently good camera calibration. We suspect it is a combination
of both.

We started out by ttingࢸ the models to the eighteen frames as they cover the lower
part of the swing, where we expect the models to tࢸ well. The eighteen frames of a
swing are shown in Figures 4.2 and 5.13 on page 25 and on page 68. When we lower
the number of frames we’re ttingࢸ to, the results for the pendulum with xedࢸ length
become drastically better as we are looking at a smaller interval. We expect this to be
because the assumption of xedࢸ length is better near impact, but primarily because
the anchor point is more consistent with a physical point near impact.

6.7 Anchor point vectors 83

Interpolfltion of shflft flngle

Using diࢷerent degrees of a polynomial to interpolate θshaft as seen in Figure 5.15 on
page 69 we are able to achieve a reasonably low RMSE. The lowest RMSE of 1.06◦
is achieved at a degree of eight, however, we determine that a degree of four is better
to interpolate with, as this will be more robust in the case of very few inliers and it
has a similar RMSE.

In order to tࢸ the polynomial, we use the inliers from the anchor point RANSAC
model .tࢸ We could have ttedࢸ both models simultaneously and used distances to
both models to evaluate our inliers since both θshaft and the anchor point should
agree with their ttedࢸ models for a given consensus set. We have however not done
this because it is simpler to compute as it has only one threshold, and performs
acceptably well as is illustrated by the RMSE of the interpolated angle.

It should be noted that this error is not the error between the actual θclub and the
interpolated value, but only a value of θclub found by our method. Because of this, we
expect the RMSE to be slightly higher than if we had compared with an annotated
angle.

6.7 Anchor point vectors

As mentioned in Section 4.7 on page 57, variations in vimpact→ap correspond to varia-
tions in vap. From Table 5.16 on page 70 we see that these variations are small. The
best method uses the smoothing spline for interpolation of the anchor point, and only
considers the dynamic lie angle for the hitting plane homography. We ndࢸ the latter
surprising as the loft angles for irons and wedges are considerably diࢷerent from 0◦.

As mentioned one stroke is removed before computing these results, since the cor-
responding vimpact→ap is more than 20 cm long. The cause of this is a very bad
estimate of the impact time which is several frames oࢷ.

From Tables 5.17 to 5.19 on page 70 and on page 71 we see that the variations are
smaller for the drivers in DS1, than the other two datasets. We suspect it stems from
the fact the cameras in the two other datasets are placed lower which makes drivers,
that have big club heads, obscure the view of the yingࢹ ball initially, which decreases
the accuracy in the computed impact time as discussed in Section 6.4 on page 81.
The tables show that DS2n and DS2z both are best on the iron.

We expected that the results from DS2n and DS2z would have been better than
the results on DS1, since the cameras were placed closer to the golf strokes and the
videos, therefore, has less mm per pixel. The results, however, do not support this
expectation.

84 6 Discussion

Anchor point clouds
The anchor point clouds shown in Figure 5.20 on page 73 tells us where ṽap,observed is
located when seeing the clubs from the front, and gives an idea about the magnitude
and direction of the bias terms β. For the irons, this corresponds very well with
how we have deࢸned the anchor points. For the wedge, there is a large bias in the
y-direction. Wedges have the largest dynamic and static loft angles, and we believe
the bias comes from the fact the loft angle is omitted in the hitting plane homography.
Figure 5.21 on page 74 supports this statement, as we see that ṽap,observed is pretty
close to where we would expect, which in turn implies that β is small. However,
the point cloud is more spread out for this model when comparing the numbers in
Table 5.22 on page 71 with the corresponding numbers in Tables 5.17 to 5.19 on
page 70 and on page 71.
For the driver, and other drivers, there seems to be a small positive bias in both
directions. We cannot conclude why this is based on our datasets.
We observe that there is a general tendency for the ṽap,observed to be located with the
same oࢷset, β from the true anchor point for each club type. This could indicate that
the βs could be compensated for by having computed approximate values of them for
each type of club.

Using only every second flnchor point
Table 5.23 on page 72 shows the performance of our method when we only use ev-
ery second anchor point. This is done in order to simulate how our method would
perform on a video with only 120 FPS. We are pleasantly surprised by how little
the performance decreases. The errors committed are still in ranges where we expect
them to be useful in an application. The only problem with our method is that we
do not truly emulate lower frame rate video because we have still used all frames of
the ball track to compute the impact time. We do, however, expect that the eࢷect
on the impact time from a lower FPS video will be relatively small.

6.8 Impflct position
The predicted positions in Figure 5.24 on page 76 shows that it is possible with
our method to predict the impact position on the club head with reasonable accuracy.
Tables 5.17 to 5.19 on page 70 and on page 71 show that the results are more accurate
in the horizontal direction than in the vertical. This is a nice attribute as a golfer is
often more interested in the horizontal impact position than the vertical.

CHAPTER 7
Conclusion

We have analyzed videos of golf strokes recorded with an iPhone paired with data
obtained using a Doppler radar.
We have devised and implemented methods for locating the initial ball position, de-
termining the time of impact, determining the shaft angle and estimating the impact
point between the club and ball.
We have shown that the impact time between club and ball can be estimated using
the ball trajectory and given an estimate of the error. We have also shown that the
initial ball position can be accurately detected.
The results show that it is feasible to estimate the impact point between ball and club
with a useful accuracy without using markers, based on the data, by determining the
club and ball trajectories. We expect the results of this thesis to be of great value to
TrackMan A/S.

7.1 Recommendfltions for TrflckMfln A/S
Based on our analysis a reduction in FPS to 120 only worsens the results slightly.
Depending on the desired accuracy 120 FPS could be a suitable frame rate. However,
higher frame rates do yield better results.
We have not observed the expected beneࢸt from having more pixels per mm, which
leaves us unable to give any recommendations on pixels per mm required for a product.
We recommend investigating the height at which the camera is placed further, as we
have seen considerable diࢷerences between datasets, we suspect are caused by this.
A higher placed camera has a better view of the ball trajectory immediately after
impact.
In general, we have not focused on the computational complexity or simplicity of our
used methods. E.g. we suspect that the MRF could be replaced by a simple threshold
and morphological operations.

86

APPENDIX A
Appendix A

A.1 Geometricfll distflnce to second degree polynomifll
Given a polynomial

f(x) = ax2 + bx+ c,

and a point (x0, y0) we want to calculate the perpendicular or geometrical distance
between them. The squared distance is given by

∆2 = (xp − x0)
2 + (f(xp)− y0)

2

= (xp − x0)
2 + ((ax2p + bxp + c)− y0)

2

If we take the derivative with respect to xp and set this equal to zero we get the
equation

0 =
d∆2

dxp

= 2(xp − x0) + 2((ax2p + bx+ c)− y0)(2axp + b)

= 4a2x3p + 6abx2p + (2 + 4(c− y0)a+ 2b2)xp − (2x0 − 2(x− y0)b).

The smallest real solution to this is the square of the geometrical distance. The
equation can be solved either analytically or numerically.

A.2 Projected shflft flngle
Suppose we have two points x and r in R

3, where x projects to the anchor point of
the club and r is a direction vector of the shaft. We do not know the depth of x, so
we let it be the unknown scalar s. x+ r should project to a point on the shaft. If we
project this to the image plane we get

K (x+ r) =



f 0 px
0 f py
0 0 1







sx1
sx2
s


+



r1
r2
r3






=



s(fx1 + px) + fr1 + pxr3
s(fx2 + py) + fr2 + pyr3

s+ r3




88 A Appendix A

And the Cartesian pixel coordinates are thus

p1 =

[
s(fx1+px)+fr1+pxr3

s+r3
s(fx2+py)+fr2+pyr3

s+r3

]

We know that x projects to the anchor point.

K (x) =



f 0 px
0 f py
0 0 1







sx1
sx2
s






=



s(fx1 + px)
s(fx2 + py)

s




The Cartesian coordinates are

p0 =

[
fx1 + px
fx2 + py

]

From these we can create a direction vector of the shaft in the image plane

pd = p1 − p0

=

[
s(fx1+px)+fr1+pxr3

s+r3
s(fx2+py)+fr2+pyr3

s+r3

]
−

[
fx1 + px
fx2 + py

]

=

[
f(r1−r3x1)

s+r3
f(r2−r3x2)

s+r3

]

The slope of this line is

pd,2

pd,1
=
r2 − r3x2
r1 − r3x1

,

where we see that this is independent of s, meaning that the depth at which x is
created along its line of projection does not inࢹuence the slope of the direction vector
in the image plane.

APPENDIX B
Appendix B

Images showing anchor point clouds on the clubs from the three datasets.

B.1 Anchor point clouds

Using only lie flngle

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(a) DS1 Driver 2
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(b) DS1 Iron 1

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(c) DS2n Driver 1
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(d) DS2n Driver 3

Figure B.1: Only lie angle.

90 B Appendix B

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(a) DS2n Iron 2
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(b) DS2z Driver 1

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(c) DS2z Driver 3
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(d) DS2z Wedge 2

Figure B.2: Only lie angle.

Using loft flnd lie flngle

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(a) DS1 Driver 1
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(b) DS1 Driver 2

Figure B.3: Loft and lie angle.

B.1 Anchor point clouds 91

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(a) DS1 Iron 1
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(b) DS2n Driver 1

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(c) DS2n Driver 3
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(d) DS2n Iron 2

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(e) DS2z Driver 1
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(f) DS2z Driver 3

Figure B.4: Loft and lie angle.

92 B Appendix B

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(a) DS2z Iron 2
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(b) DS2z Wedge 2

Figure B.5: Loft and lie angle.

B.1 Anchor point clouds 93

Using loft, fflce flnd lie flngle

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(a) DS1 Driver 1
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(b) DS1 Driver 2

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(c) DS1 Iron 1
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(d) DS2n Driver 1

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(e) DS2n Driver 3
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(f) DS2n Iron 2

Figure B.6: Loft, face and lie angle.

94 B Appendix B

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(a) DS2n Wedge 2
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(b) DS2z Driver 1

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(c) DS2z Driver 3
-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(d) DS2z Iron 2

-6 -4 -2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

(e) DS2z Wedge 2

Figure B.7: Loft, face and lie angle.

Bibliography
Aanæs, Henrik (2015). Lecture Notes on Computer Vision. DTU Compute.
Anton, Howard and Chris Rorres (2010). Elementary Linear Algebra: Applications
Version. John Wiley & Sons.

Björck, Åke (1996). Numerical methods for least squares problems. Siam, p. 408.
Bradski, G. (2000). “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools.
Canny, John (1986). “A Computational Approach to Edge Detection”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence PAMI-8.6, pp. 679–698.

Cochran, Alastair J. and John Stobbs (1968). The search for the perfect swing. Tri-
umph books Chicago, Illinois.

Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). “Maximum likelihood from
incomplete data via the EM algorithm”. In: Journal of the Royal Statistical Society,
Series B 39.1, pp. 1–38.

Duda, Richard O. and Peter E. Hart (1972). “Use of the Hough Transformation to
Detect Lines and Curves in Pictures”. In: Commun. ACM 15.1, pp. 11–15.

Fischler, Martin A. and Robert C. Bolles (1981). “Random sample consensus: a
paradigm for model ttingࢸ with applications to image analysis and automated
cartography”. In: Communications of the ACM 24.6, pp. 381–395.

Foresight (2016). Foresight HMT. http://www.foresightsports.com/catalog/hmt-head-
measurement. Accessed 10/08/2016.

Gao, Xiao-Shan, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng (2003). “Com-
plete Solution Classiࢸcation for the Perspective-Three-Point Problem”. In: IEEE
Trans. Pattern Anal. Mach. Intell. 25.8, pp. 930–943.

Gears (2016). Gears Golf. http://gearssports.com/. Accessed 10/08/2016.
Gehrig, Nicolas, Vincent Lepetit, and Pascal Fua (2003). “Visual Golf Club Tracking

for Enhanced Swing Analysis”. In: British Machine Vision Conference, BMVC
2003, Norwich, UK, September, 2003. Proceedings, pp. 1–10.

Groen, Pieter de (1996). “An Introduction to Total Least Squares”. In: Nieuw Archief
voor Wiskunde 14.2, pp. 237–253. arXiv: 9805076 [math].

http://arxiv.org/abs/9805076

96 Bibliography

Hammersley, J. M. and P. E. Cliࢷord (1971). “Markov random eldsࢸ on niteࢸ graphs
and lattices”. In: Unpublished manuscript.

Hartley, Richard and Andrew Zisserman (2004).Multiple View Geometry in Computer
Vision. Second. Cambridge University Press.

Hough, Paul V. C. (1962). Method and means for recognizing complex patterns. US
Patent 3,069,654.

Jorgensen, Theodore P. (1999). The physics of golf. Springer Science & Business
Media.

Kolmogorov, Vladimir and Ramin Zabih (2004). “What energy functions can be min-
imized via graph cuts?” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 26.2, pp. 65–81.

Levenberg, Kenneth (1944). “A method for the solution of certain non-linear problems
in least squares”. In: Quarterly Journal of Applied Mathmatics II.2, pp. 164–168.

Li, Stan Z. (2009). Markov Random Field Modeling in Image Analysis. 3rd. Springer
Publishing Company, Incorporated.

Lourakis, M.I.A. (Jul. 2004). levmar: Levenberg-Marquardt nonlinear least squares al-
gorithms in C/C++. [web page] http://www.ics.forth.gr/∼lourakis/levmar/. [Ac-
cessed on 26 Jun. 2016.]

Marquardt, Donald W. (1963). “An algorithm for least-squares estimation of nonlinear
parameters”. In: SIAM Journal on Applied Mathematics 11.2, pp. 431–441.

MATLAB (2016). version 9.1.0.390522 (R2016b) Prerelease. Natick, Massachusetts:
The MathWorks Inc.

Peng, Tao (2005). Detect circles with various radii in grayscale image via Hough
Transform. Matlab Central File Exchange. Accessed 11/08/2016.

Qualisys (2016). Qualisys. http://www.qualisys.com/applications/sports/golf/. Ac-
cessed 10/08/2016.

Tuxen, Fredrik (2014). 3D Club Model. Unpublished.
Woodward, Alexander and Patrice Delmas (2005). “Computer Vision for Low Cost

3-D Golf Ball and Club Tracking”. In: In Proceedings of the Image and Vision
Computing New Zealand Conference (IVCNZ), pp. 293–298.

	Abstract
	Preface
	Acknowledgments
	Contents
	List of abbreviations
	1 Introduction
	1.1 Problem statement

	2 Theory
	2.1 Related work
	2.2 Notation
	2.3 Golf terminology
	2.4 Canny edge detector
	2.5 Hough transform
	2.6 RANSAC
	2.7 MRFs
	2.8 GMM
	2.9 Dynamic programming
	2.10 Geometrical least squares for straight lines
	2.11 Camera model

	3 Data
	3.1 Datasets
	3.2 Annotations

	4 Methods
	4.1 Preliminaries
	4.2 Initial ball location
	4.3 Computing impact time
	4.4 Anchor point detection
	4.5 Anchor point interpolation
	4.6 Pose estimation at the time of impact
	4.7 Estimating impact point

	5 Results
	5.1 Camera calibration
	5.2 Ball position
	5.3 Impact time
	5.4 Anchor point detection
	5.5 Anchor point interpolation
	5.6 Anchor point vectors
	5.7 Impact position

	6 Discussion
	6.1 Project-wide considerations
	6.2 Camera calibration
	6.3 Ball position
	6.4 Impact time
	6.5 Anchor point detection
	6.6 Anchor point interpolation
	6.7 Anchor point vectors
	6.8 Impact position

	7 Conclusion
	7.1 Recommendations for TrackMan A/S

	A Appendix A
	A.1 Geometrical distance to second degree polynomial
	A.2 Projected shaft angle

	B Appendix B
	B.1 Anchor point clouds

	Bibliography

