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Figure 1: Example of interpolating between two open surfaces with different number of boundary curves. The interpolation is linear in
the latent space of the neural network and goes from a sad facial expression to a surprised facial expression from the BU-3DFE dataset
[YWS*06]. The surfaces are generated using the SSDF based network.

Abstract

Neural implicit surfaces have emerged as an effective, learnable representation for shapes of arbitrary topology. However,

representing open surfaces remains a challenge. Different methods, such as unsigned distance fields (UDF), have been proposed

to tackle this issue, but a general solution remains elusive. The generalized winding number (GWN), which is often used to

distinguish interior points from exterior points of 3D shapes, is arguably the most promising approach. The GWN changes

smoothly in regions where there is a hole in the surface, but it is discontinuous at points on the surface. Effectively, this means

that it can be used in lieu of an implicit surface representation while providing information about holes, but, unfortunately, it

does not provide information about the distance to the surface necessary for e.g. ray tracing, and special care must be taken

when implementing surface reconstruction. Therefore, we introduce the semi-signed distance field (SSDF) representation which

comprises both the GWN and the surface distance. We compare the GWN and SSDF representations for the applications of

surface reconstruction, interpolation, reconstruction from partial data, and latent vector analysis using two very different data

sets. We find that both the GWN and SSDF are well suited for neural representation of open surfaces.

CCS Concepts

• Neural Implicit Surface Representations of open surfaces → Generalized Winding Number Field, Semi-Signed Distance

Fields;

1. Introduction

Neural implicit surfaces have emerged as an effective, learnable
representation for shapes of arbitrary topology. However, open sur-
faces remain a challenge. This is hardly surprising since an implicit
surface is the level set, S = {x| f (x) = τ}, for a level, τ, and func-
tion, f , whose gradient, ∇ f , must be non-zero at all points of S.
Consequently, we can define an interior where f > τ and an exte-
rior where f < τ (or vice versa). Any curve from the (thus defined)
interior to the exterior must pass S where f = τ. In other words,
implicit surfaces are closed by definition, and we need to either

modify or add an element to the definition of implicit surfaces to
achieve open surfaces.

Perhaps, the most obvious modification is to define the surfaces
in terms of extrema, e.g. using unsigned distance fields (UDF),
rather than level sets. Unfortunately, this makes surface reconstruc-
tion significantly harder. Another approach would be to introduce
explicit boundary curves as Palmer et al. [PSW*22]. However, this
precludes having a varying number of boundary curves in the same
model.

A completely different solution is to represent an original sur-
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face in terms of its generalized winding number (GWN) which is 1
inside the (solid) object and 0 outside. Thus, the surface can be de-
fined as the set of points where the GWN changes discontinuously.
In cases where the original surface has holes, the GWN changes
smoothly along curves that pass through these holes, and we can
obtain a closed surface as the 0.5-level set of the GWN. Ironically,
this means that the GWN is an implicit representation of the holes
in open surfaces. Conversely, wherever the surface is defined, the
GWN changes discontinuously, but if the level set is extracted ro-
bustly, e.g. using bisection, we would also obtain the original sur-
face as part of the level set. At surface points, the GWN gradient is,
strictly speaking, not defined, but numerically it simply becomes
very large. Based on these considerations, we can - effectively -
treat the GWN as an implicit surface representation, and holes are
simply regions where the gradient is comparatively small.

In this paper, we examine the use of the GWN as a neural shape
representation for open surfaces and compare it to a novel repre-
sentation, which we call semi-signed distance fields (SSDF). Semi-
signed distance fields are a dual representation where both a signed
and an unsigned distance field are learned. The signed distance field
is obtained as the product of the GWN shifted by 1

2 and the UDF.
The GWN can later be restored as their ratio since it was used to
sign the distance field in the first place. The benefit of SSDFs are
twofold: we no longer have to learn the discontinuous GWN, and
the learned representation is an implicit surface (with bounded gra-
dients), which simplifies polygonization and enables faster render-
ing through ray casting.

Contrary to our initial expectations, we find that the GWN is a
precise representation for open surfaces and as easy for the network
to learn as the semi-signed distance field. However, much greater
attention must be paid to surface reconstruction for the GWN repre-
sentation. Moreover, the GWN has no information about the prox-
imity of the surface, which would impact the efficiency of ray-
tracing such surfaces. We also find that both the GWN and SSDF
based representations are very similar for reconstruction from par-
tial data. Both methods are able to interpolate between shapes with
different numbers of holes, an example using SSDF is in Figure 1.

2. Contributions

We show that a GWN based neural implicit surface representation
is able to accurately represent families of shapes with a varying
number of holes, interpolate smoothly between shapes, do shape
completion, and create a latent space that clusters similar shapes.
All of this works even though GWN is technically a volumetric
representation and not an implicit surface representation due to the
unbounded gradients at the surface. Our proposed semi-signed dis-

tance field (SSDF) for neural implicit surface representation per-
forms similarly if not better than the GWN based method.

In summary, our main contributions are:

• We introduce the semi-signed distance field (SSDF) for neural
surface representation of shapes with holes.

• We perform the first quantitative evaluation of the GWN as a
neural representation of open surfaces, and compare it to an
SSDF based representations.

• We introduce a method for recovering an open surface from a

GWN UDF SSDF
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Figure 2: A cross sectional view of a 3D scan of a human face from
the BU-3DFE dataset [YWS*06]. The red lines are isocontours of
1
2 , 0.001, 0 for the GWN, UDF and SSDF respectively. The mouth
and eyes are holes and the back of the head is also a hole.

neural GWN or SSDF representation, which includes automati-
cally determining a threshold for which parts are holes.

• Finally, we introduce a method for quantitatively evaluating an
interpolation between a pair of shapes.

3. Generalized Winding Number

The term winding number refers to the number of times that a
closed curve winds around a point in the plane. This is clearly an
integer, and for a simple closed curve the value is 1 if the point is
in the region bounded by the curve and 0 otherwise.

For a compact surface in 3D that does not intersect itself, we
can likewise assign a winding number of 0 to any point outside the
surface and 1 to any point inside. More generally, Jacobson et al.
proposed the GWN as a method for robustly determining whether
a point in 3D is inside or outside a shape [JKS13]. The GWN for a
surface, S, at a given point, x, is the integral over the surface of the
signed area projected onto the unit sphere,

w(x) =
1

4π

∫
S

n(s) · (s−x)

∥s−x∥3 ds , (1)

where n(s) is the outward facing normal of the surface at s

[BDS*18]. Thus, the sign is positive for surface elements whose
normal points away from x and negative where the normal points
toward x.

The robustness of this formulation is due to the fact that minor
holes in the surface or self-intersections only have a limited influ-
ence on the value of w.

Another important property is the fact that w changes discontinu-
ously on the surface since the sign of the numerator in Equation (1)
changes as x passes through the surface. However, if we cut a hole
around the point where x impinges on the surface, the change be-
comes smooth as shown in Figure 2.

4. Related work

The interest in neural implicit surface representations was in large
part sparked by the work of Park et al. [PFS*19] which demon-
strated that it is possible to encode geometric objects using an auto-
decoder neural network trained on a class of shapes and an associ-
ated latent vector encoding for each specific shape. Besides being
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Table 1: An overview of how DeepSDF [PFS*19], NDF [CP*20],
and UDF [JMdB*21] compare to GWN and our proposed SSDF.

DeepSDF NDF UDF GWN SSDF

Latent space ✓ ✗ ✓ ✓ ✓

Open surfaces ✗ ✓ ✓ ✓ ✓

Surface recovery easy hard hard easy easy
Distance information ✓ ✓ ✓ ✗ ✓

In-/outside information ✓ ✗ ✗ ✓ ✓

able to neurally represent shapes, it is also possible to cluster and
classify shapes according to their latent vectors as shown by e.g.
Juhl et al. [JMdB*21]

As mentioned, implicit surface methods, such as e.g. signed dis-
tance fields [JBS06], generally represent the surface as a level set
of a scalar field, f :R3→R, and this limits the methods’ applica-
bility to watertight surfaces.

Recent works [CP*20; JMdB*21; AL20; GSF22; VKS*21;
RCKV22; PSW*22] alleviate this problem by learning functions
that can represent open surfaces. One example is the Unsigned Dis-
tance Function (UDF) [CP*20; JMdB*21; AL20]. Unfortunately,
surface points are minima of the UDF, and this makes it consid-
erably harder to reconstruct the surface from a UDF than from an
SDF. Chibane et al. [CP*20] therefore use the gradients of the UDF
but this is problematic, as the gradient of the UDF is discontinuous
at the surface and very sensitive to noise and sampling artifacts.
However, recently, convincing results using a modified marching
cubes algorithm have been shown by Guillard et al. [GSF22].

Venkatesh et al. [VKS*21] adopt an approach in which they re-
turn the closest point on the surface for a given query point, whereas
Rella et al. [RCKV22] find a vector field and extract the surface
as the set of points where the vector field is zero. Palmer et al.
[PSW*22] employ a method rooted in geometric measure theory.
Essentially, their approach is also an implicit surface representa-
tion, but the boundary curves are explicitly represented. The SSDF
is different in this respect since our boundary is also implicit. Im-
portantly, this makes it straight forward to learn a class of shapes in
which instances might have different numbers of boundary curves.
This does not appear to be possible using the scheme due to Palmer
et al.

Other works on volume rendering also address the problem
of object representation. Mildenhall et al. [MST*20] use a light
field representation and can accurately represent scenes, but this
comes at the expense of poorer geometry representation. Yariv et

al. [YGKL21] and Azinovic et al. [AMG*22] build on this by
learning both a radiance field and a SDF. However, neither is able
to represent open surfaces. Another approach involving parameter-
ization of a surface using a tetrahedral grid is presented by Gao et

al.[GWM*22]. They encode shapes within a tetrahedral grid and
then use a discriminator to essentially learn an inside/outside clas-
sification of the tetrahedrons in order to represent shapes. They are
also not capable of representing open surfaces.

We compute the sign of our semi-signed distance fields using the
generalized winding number method proposed by Jacobson et al.

Figure 3: A comparison of how a face from the BU-3DFE

dataset [YWS*06] is reconstructed with the method by Chen et

al. [CTFZ22]. Left: reconstructed from learned UDF, right: recon-
structed from the ground truth UDF.

[JKS13]. Specifically, we employ the fast winding number method
[BDS*18]. Prior to this work, the winding number has been learned
directly by Chi and Song [CS21] who used it in a system for gar-
ment reconstruction. However, their work targeted pose estimation
in which the surface reconstruction was used as a method of esti-
mating the pose. In this work, we specifically investigate surface re-
construction and the shape representation abilities. Unfortunately,
the discontinuous nature of the GWN provides further challenges
when doing surface reconstruction and does not contain global
shape information. For this reason, we propose to learn the GWN
indirectly as the ratio of the semi-signed distance and the unsigned
distance. In Table 1 we compare our proposed SSDF method to the
most similar competing methods.

5. Unsigned distance fields

As mentioned, many recent works use the unsigned distance field
for neural representation of open surfaces [CP*20; JMdB*21;
AL20; GSF22]. The unsigned distance field is easy to compute
for open surfaces and seems like an obvious choice to represent
them. However, in the process of learning the unsigned distance
with a neural network, small errors are introduced, mostly smooth-
ing, which make them crucially different from the ground truth un-
signed distance field. Reconstructing the surface from a learned
UDF is therefore a non-trivial task. This is very apparent when
comparing the reconstruction obtained with a learned UDF (a net-
work with the architecture presented in Section 6.1) to the recon-
struction from the ground truth UDF, as we do in Figure 3. Here,
we use the recent method by Chen et al. [CTFZ22] for the surface
reconstruction which was trained on reconstructing ground truth
UDFs. We also experimented with MeshUDF [GSF22], but it per-
formed worse than the method by Chen et al. on our learned UDF.

One could potentially fine-tune the method by Chen et al. on
our specific type of learned UDF, but this is more complicated than
our presented approaches. Additionally, the UDF has the inherent
weakness that it has no notion of which parts are inside and out-
side, making interpolation between shapes that are far apart very
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difficult. This is because the model has to smoothly move the iso-
contour of zero between the locations of the shapes and if it moves
slightly above or below zero, the surface will disappear or be dou-
bled, respectively. Based on these considerations we focus on GWN
and SSDF based representations in this paper.

6. Method

In this section we present the implementation details. We com-
pare two different types of networks based on the GWN and SSDF.
While all these are applicable to any task in surface representation
with neural networks, in this paper we focus on the auto-decoder
style networks introduced by Park et al. [PFS*19] that are able to
represent a multitude of shapes with a single network, by having a
unique latent vector for each shape.

For simplicity in the sequel, we shift the GWN such that 0 is
contained in the discontinuous jump.

Consequently, the shifted GWN is defined as:

w
s(x) = w(x)−

1
2

(2)

Our proposed SSDF representation requires predicting two con-
tinuous functions; the semi-signed distance, and the unsigned dis-
tance. Given the unsigned distance du(x) the semi-signed distance
is then given as:

d
ss(x) := w

s(x)du(x) (3)

The goal of the neural network fθ is to, for every shape i and
latent vector hi associated with shape i, be a good function approx-
imator of the signal in consideration for all points x in the target
domain Ωi. For the network learning the GWN, the network should
predict the shifted generalized winding number for shape i, ws

i (x),

f
ws

θ (hi,x)≈ w
s
i (x),∀ x ∈Ωi (4)

As opposed to the previous network configurations, the SSDF
based network should predict both the semi-signed distance dss

i and
the unsigned distance du

i , for all points x in the target domain Ωi,
i.e.,

f
u
θ (hi,x), f

ss
θ (hi,x)≈ {d

u
i (x),d

ss
i (x)},∀ x ∈Ωi (5)

We compute du using PyGEL3D and w(·) using libigl [JP*18;
BDS*18]

6.1. Network architecture and latent vectors

We use the same network architecture as Park et al. [PFS*19],
i.e. eight fully connected 512-dimensional layers and a 256-
dimensional latent space. To train the network we use the L1 dis-
tance, which for the SSDF based network is:

L(θ,hi,x) =
∣∣du

i (x)− f
u
hi
(x)

∣∣+
∣∣dss

i (x)− f
ss
hi
(x)

∣∣ (6)

The losses are similar for the GWN network.

To improve the interpolations obtained with our network we also
use the Lipschitz loss introduced by Liu et al. [LWJ*22]:

argmin
θ,{hi}N

i=1

N

∑
i=1

∑
x∈Ωi

(
L(θ,hi,x)+α ·Πl

j softplus(c j)
)
. (7)

Decoder

3D point samples𝐱 = (𝑥, 𝑦, 𝑧)

𝑧
𝑦
𝑥

Mesh 𝑖 with latent vector 𝐡8

Skip connection

Back propagation

𝐡/ 𝑓9(𝐡8 , 𝐱)

𝑑/
0(𝐱)

𝑑/
11(𝐱)

Figure 4: Illustration of the training process for the network predict-
ing the semi-signed distance field and the unsigned distance field.
Adapted with permission from [JMdB*21]

Here N is the number of shapes in the data set, α = 10−6 is a
scaling factor which is used to “scale each row of W j to have the ab-
solute value row-sum less than or equal to softplus(c j)” [LWJ*22],
where W j is the weights for layer j.

During inference we freeze the network parameters θ and obtain
the latent vector for an unseen shape by solving:

h̃ = argmin
h

∑
x∈Ω

L(θ,h,x) (8)

The Adam optimizer [KB14] was used to optimize both the net-
work parameters and the latent space vectors with learning rate
0.0001 and 0.001 respectively. The neural networks were imple-
mented using PyTorch [PGM*19]. The network training is illus-
trated in Figure 4.

The latent space vectors are generated from a multivariate nor-
mal distribution with zero mean, variance 0.01 and zero covariance.

6.2. Point sampling

We uniformly sample points on the surface of the object and off-
set them along a normally distributed vector. Additionally, we uni-
formly sample points within the bounding box from [−1,−1,−1]
to [1,1,1]. This is how the target domain Ωi is defined.

6.2.1. SSDF surface recovery

Our method for recovering the surface from our semi-signed dis-
tance is a two step process. First, we recover the closed surface
from the 0-level set of the semi-signed distance field. Second, we
remove the parts of this surface that do not correspond to the ac-
tual surface. This two-step approach enables us to use any method
that can operate on a regular signed distance field to recover the
closed surface such as dual-contouring or ray casting, followed by
our hole detection step.

For the experiments in this paper we have used dual-
contouring [BGAA12]. This is done by creating a voxel grid of
the volume in the bounding box and evaluating f ss

h in every voxel.
Then, a closed mesh can be extracted as the 0-level. Afterwards,
the mesh is smoothed using simple average smoothing and every
vertex in the mesh is then projected down on the exact 0-level set
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by running eight iterations of

x← x− f
ss
h (x)

∇ f ss
h (x)

||∇ f ss
h
(x)||22

, (9)

where x is the position of a vertex in the mesh.

After the vertices have been projected to the 0-level isocon-
tour, the quad faces are split into triangles. Then the mesh is op-
timized by edge flipping in order to minimize the dihedral angle
and maximize the minimum angle. Lastly, the resolution of the re-
constructed mesh is increased by applying root3 subdivision by
Kobbelt [Kob00] to the reconstructed mesh, and then all vertices
are projected to the 0-level set by running eight iterations of Equa-
tion (9) again. Finally we convert the closed surface to the open one
using the method in Section 6.3.

6.2.2. GWN surface recovery

The method we use to recover a surface from the GWN is very
similar to the method for the SSDF, but uses bisection instead. The
same voxel grid is created and f

ws

h
is evaluated in every voxel. A

closed surface is then recovered by using dual contouring on the
voxel grid. The closed surface is cubic due to the nature of the
GWN field. Therefore, the mesh is smoothed using simple average
smoothing before the vertices are placed on the 0-level isocontour.
As the GWN field is discontinuous, the vertices cannot be projected
down on the 0-level isocontour using the gradients. Therefore, a bi-
section algorithm is used instead. For each vertex, two points are
offset in the negative and positive direction of the vertex normal,
until the two points are inside and outside the surface respectively,
determined by the sign of f

ws

h
. The mid-point between the two point

offsets is found and depending on the sign of f
ws

h
of this mid-point,

the midpoint replaces either the point inside or outside the shape.
This process is repeated eight times and afterwards the vertex posi-
tion is set to the point inside the shape. If the two offset points have
the same sign, the vertex position is left unchanged. Similar to the
SSDF reconstruction process, the quad faces are split into triangles
and the mesh is optimized in the same way as the SSDF. Finally
we convert the closed surface to the open one using the method in
Section 6.3.

6.3. Detecting holes in the surface

When the closed surface has been obtained, the remaining step is
to figure out which parts of it should be removed to obtain the final
surface.

To detect the location of the holes in the closed surfaces, we use
the GWN. For the SSDF network, the GWN is approximated from
the output of the neural network as follows:

w̃
s
h(x) =

f ss
h (x)

f u
h
(x)+ ε

, (10)

where ε = 0.5 ·10−5 to avoid numerical issues when f u
h (x) is close

to zero.

For the GWN network, w̃s
h(x) is simply the output of the net-

work. From these, the spatial gradients ∇w̃s
h(x) for each network

can be computed using automatic differentiation.

As the generalized winding number is discontinuous at the sur-
face, but smooth everywhere else, the approximated winding num-
ber will have a large gradient at the surface. Thus, we apply a
threshold k to its gradient magnitude to obtain an indicator func-
tion

∥∥∇w̃
s
h(x)

∥∥> k (11)

This indicator function can be evaluated everywhere on the closed
surface to determine which parts should be removed because they
do not correspond to the real surface. For a mesh we evaluate the
gradient magnitude at each vertex and perform a cut along the
isocurve where the interpolated gradient magnitude is k. This is
done as follows: If ∥∇w̃s

h(x)∥ ≤ k at all vertices in a triangle face,
the triangle face is removed. If one or two of the vertices in a tri-
angle face are on the surface, linear interpolation is used to find the
points on the edges at which the triangle face should be cut.

In the case of ray casting, if the indicator function indicates that
a zero-crossing of the semi-signed distance field is a hole, the ray
is re-cast from the surface intersection to see if there is another
intersection along the ray.

6.3.1. Selecting k

Intuitively, varying k corresponds to making the holes in the mesh
smaller or larger. Both holes that are too small and holes that are
too large compared to ground truth are penalized by the chamfer
distance, and we seek the value of k that minimizes this metric.

We reconstruct the closed learned mesh for each surface in a
subset consisting of approximately 10% of the training samples (in
order to reduce run-time) evenly selected from all classes. We then
uniformly sample 30,000 points on the surface of both the orig-
inal and the reconstructed meshes once. We calculate ∥∇w̃s

h(x)∥
at all points on the reconstructed meshes. An initial guess for k is
then chosen as the average of the median of these values. For a
given k we discard points where ∥∇w̃s

h(x)∥ ≤ k and approximate
the chamfer distance based on the remaining points. We minimize
the approximated chamfer distance with basinhopping [WD97] fol-
lowed by Nelder-Mead [GH12] to determine the optimal k.

7. Experiments

In this work we have used two different data sets. These data
sets were chosen, as the data in the data sets differ in topol-
ogy and have holes as opposed to other closed data sets such
as ShapeNet [CFG*15], which has been widely used elsewhere
[PFS*19; CP*20; VKS*21].

7.1. BU-3DFE

The Binghamton University 3D Facial Expression [YWS*06]
dataset contains 2500 3D scans of facial expressions from 56
women and 44 men ranging in age from 18 years to 70 years.
There are 25 scans of each person, covering six different expres-
sions (happiness, disgust, fear, angry, surprise and sadness) with
varying intensity and one neutral facial expression. Before using
the data set, 31 scans were discarded due to scan and landmark an-
notation issues. The remaining meshes were rigidly aligned in the
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Figure 5: Comparison of the three different representation methods for surface reconstruction of a partial facial expression from the BU-

3DFE dataset [YWS*06]. From left to right: Ground truth, GWN reconstruction, SSDF reconstruction, and UDF reconstruction using the
method by Chen et al.[CTFZ22].

same way using the annotated landmarks. Afterwards, the meshes
were converted into triangle meshes, centered around the origin
and scaled using the same scaling factor such that they all would
fit inside a sphere with diameter 0.99. This ensured that the rela-
tive scale between the meshes was preserved. Different issues with
the meshes such as multiple vertices located at the same position,
duplicate edges and disconnected components were also resolved.
As a last processing step, the triangle faces within the left and right
eye regions of the facial scans were removed, if the eyes were open.
Moreover, the triangle faces in the mouth region were removed, if
the facial scan belonged to one of the categories: happiness, dis-
gust, fear, surprised. This processing step was carried out in order
to introduce more holes into the surfaces. The dataset was split on
a person-basis into a training set containing facial expressions from
45 women and 35 men (around 80% of the data) and a test set con-
taining 11 women and 9 men (remaining 20% of the data set) such
that the distribution of men and women in both the training set and
test set was similar. The triangle faces within the eye regions and
within the mouth region of the meshes in the training set were also
removed.

7.2. MGN

The MGN (Multi-Garment Net) dataset [BTTP19] including the
additional Part-2 data consists of 3D scans of garments and body
poses. In our work, we only used the 3D scans of garments, which
entails 328 3D scans of pants, shorts, T-shirts and coats. The
meshes were already pre-aligned before use. They were also cen-
tered around the origin and scaled using the same scaling factor,
such that they would all fit inside a sphere with diameter 0.99. This
ensured that the relative scale between the meshes was preserved.
Each category of garments was split into a training set and a test set
such that the distribution of each type of garment in both the train-
ing set and test was similar. Consequently, the training set consists
of 264 types of garments (around 80% of the data set) and the test
consists of the remaining 64 types of garments.

8. Results

We compare two different neural networks based on the GWN and
SSDF for both the BU-3DFE and MGN data set. The networks use
the same architectures and only differ in what they are trained to
predict. We have evaluated the networks on surface reconstruction
accuracy, smoothness of interpolations from one shape to another,
shape completion and how the latent vectors cluster according to
labels. The evaluation of the networks are based on shapes, which
have not been used to train the network parameters θ.

8.1. Surface reconstruction

To assess the quality of the surface reconstructions, we use the
meshes in the test set. The reconstructed meshes are compared to
the original meshes using the chamfer distance and mesh comple-
tion as metrics. These metrics were chosen, as they provide an over-
all assessment of how different a reconstructed mesh is to an orig-
inal mesh. We left out mesh accuracy, as this metric is only appli-
cable to closed surfaces. The chamfer distance and mesh comple-
tion are calculated the same way as in [PFS*19] with 30.000 points
used for the chamfer distance and 1000 points for mesh comple-
tion. When we sample the points to calculate the metric, we weight
the samples by the triangle face areas. The evaluation of the surface
reconstructions for our method (SSDF) using the above mentioned
metrics is in Table 2. The GWN and SSDF surface reconstructions
are very similar in accuracy with the GWN being slightly better
on the BU-3DFE dataset and SSDF for the MGN data set. Exam-
ples of different methods’ surface reconstruction ability is seen in
Figure 5.

8.2. Interpolation in latent space

Using the vectors in the latent space associated with the learned
shapes, it is possible to interpolate between different shapes with
varying number of boundary curves. In Figure 1, an interpolation
between two different facial expressions (angry and surprised) from
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Figure 6: Samples from a linear interpolation between latent vectors from the GWN based network for a pair of shorts, a T-shirt, a coat, and
a pair of pants from the MGN dataset [BTTP19]

Table 2: Analysis of the quality of surface reconstructions test set
meshes. ↓ indicates lower is better, ↑ indicates higher is better. Best
results are marked in bold.

BU-3DFE MGN

mean median mean median

Chamfer distance, ↓ multiplied by 104

GWN 0.151 0.143 0.354 0.201
SSDF 0.195 0.189 0.271 0.199

Mesh completion, ↑

GWN 0.996 0.997 0.967 0.980

SSDF 0.987 0.989 0.969 0.979

a person in the BU-3DFE test set is seen. Figures 6 to 8 show
interpolations between a pair of shorts, a T-shirt, a pair of pants,

and a coat from the MGN test set for the GWN, SSDF and UDF
based methods respectively. There is a smoother transition between
the SSDF based interpolations. Further interpolations with more in-
between steps are provided in the supplementary material as MP4-
files.

Interpolations are usually only qualitatively evaluated as there
is rarely ground truth for interpolation. We introduce a method
to qualitatively evaluate interpolations of shapes. We do this by
measuring how much a metric varies when interpolating between
two shapes. We measure the following four different metrics: sur-
face area, number of connected components, number of boundary
curves and the length of all the boundary curves.

We employ an approximation of two times the Dirichlet energy
to measure the variability. More specifically, we calculate it as the
average of the squared difference of the specific metric between
interpolation i and interpolation i+ 1 across 30 interpolations be-
tween two pairs of shapes. This is averaged over five pairs of ob-
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Figure 7: Samples from a linear interpolation between latent vectors from the SSDF based network for the same pair of shorts, T-shirt, coat,
and pair of pants as in Figure 6

jects with varying boundary curves. The results are in table Table 3,
which shows how the SSDF based method is better at interpolation
for both data sets across almost all metrics, as the metrics are lower,
which indicates that the interpolations are smoother.

8.3. Shape Completion

We also test the ability of the networks to do shape completion.
We generate data sets of partial shapes from the test sets of BU-

3DFE and MGN. For each test mesh, we sample a random vertex
on the mesh, then we obtain its normal vector and afterwards we
remove those vertices in the mesh, where the dot product between
the sampled normal vector and the normal vector of the other ver-
tices is negative. By constructing the partial shapes in this way,
we approximate the process of only scanning the objects from one
direction. Moreover, by sampling the initial vertex at random, we

avoid introducing bias in this process. However, this also means
that some shapes will be reduced a lot with respect to the surface
area while other shapes will only experience a slight reduction in
triangle count.

Similar to inference for shapes in the test data set, we find the
latent vectors using Equation (8). However, to avoid the missing
parts of the shapes being perceived as holes, the target domain Ωi

for partial shape i is constrained to only include points sampled
on the remaining parts of the surface of the partial shape. As we
know on beforehand that we want to infer the surface from a par-
tial shape, we can leave out points sampled in the bounding box of
the partial shape. Despite this change of point sampling strategy,
we unfortunately cannot avoid that the network perceives some of
the missing surface as being holes. We evaluate the accuracy of
the surface reconstructions of the partial shapes against the ground
truth shapes using the same metrics as for evaluating the full sur-
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Figure 8: Samples from a linear interpolation between latent vectors from the UDF based network for the same pair of shorts, T-shirt, coat,
and pair of pants as in Figure 6. Reconstructed using the method by Chen et al.[CTFZ22].

face reconstructions. The results are in table Table 4 and examples
of partial reconstructions from the BU-3DFE dataset are seen in
Figure 10. It is clear that the partial scan reconstructions do not
capture the topology of the original surface, as both reconstruc-
tions have an open mouth. These results are further discussed in
Section 9.

We observe that the SSDF-based network is better at recon-
structing partial shapes for the BU-3DFE data set, whereas the
GWN based network is better at reconstructing partial shapes for
the MGN based network.

8.4. Latent vector analysis

By using the Lipschitz loss proposed by Liu et al. [LWJ*22] we
ensure that the output from the network is smooth with respect
to the latent vectors. Put differently, the Lipschitz loss penalizes

latent vectors which are very close but correspond to very differ-
ent shapes. Consequently, we expect similar shapes to have similar
latent vectors and this is borne out by our experiments. Figure 9
shows a two-dimensional visualization of the inferred latent vec-
tors of the test shapes in BU-3DFE and MGN for both the GWN
and the SSDF based methods. For BU-3DFE, it is clear that there
are certain areas with similar shapes, even though the points are not
linearly separable into their classes. This is in line with similar ex-
periments by Juhl et al. [JMdB*21], which also show that gender
cannot easily be classified on the basis of the geometry of the facial
shapes. For MGN the latent vectors for the pants are clearly sep-
arated into one distinct group, except a single pair of pants in the
GWN based latent space. For both methods, the shirts and coats
blend together. For the GWN method the shorts are spread out,
whereas the shorts are more grouped together for the SSDF based
network. Overall both the GWN and SSDF based methods perform
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Figure 9: Two-dimensional visualization of the obtained latent vectors from the test set using multidimensional scaling. Left: GWN based
method, right: SSDF based method. Top: BU-3DFE data set, bottom: MGN data set.

very similarly with respect to clustering similar classes together in
the latent space.

9. Discussion

At the outset, we believed that simply using the generalized wind-
ing number in a neural implicit representation scheme would lead to
very poor results since the GWN is discontinuous on the boundary
of 3D shapes and these discontinuities would likely be hard to learn.
This turned out to be incorrect: the GWN is not harder to learn than
the SSDF and, in fact, the reconstruction error for whole and partial
shapes is sometimes slightly smaller for the GWN than the SSDF;
both are far better representations than unsigned distance fields. A

reason for the occasional (slight) superiority of GWN could be that
the SSDF representation requires us to also learn the unsigned dis-
tance which is gradient discontinuous on the surface and therefore
slightly smoothed by the network. Dividing by the reconstructed
UDF introduces some error, particularly in the gradient magnitude.

When it comes to the application of shape interpolation, the two
methods differ a bit more. It seems that the SSDF representation is
generally superior for interpolation, but it depends on the dataset
and the specific measure.

Additionally, there are some practical reasons to prefer the
SSDF. Since the GWN is discontinuous at the surface, it is not
possible to sample it first and then reconstruct from an interpo-
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Figure 10: Partial shape reconstruction from the BU-3DFE dataset [YWS*06]. From left to right: ground truth, simulated partial shape,
GWN reconstruction, SSDF reconstruction. The simulated partial scans contain 61% and 59% (top and bottom) of the original surface.

lated version of the GWN. This is tantamount to sampling a binary
function and would lead to rampant aliasing artifacts. Good recon-
struction quality requires the bisection approach discussed above.
For similarity in the methods, we used eight iterations of bisection
and gradient descent for GWN and SSDF respectively. However, as
the SSDF can utilize distance and gradient information to perform
Newton-Raphson, it needs much fewer iterations in practice. More-
over, for ray tracing GWN offers no way to estimate the distance to
the surface — unlike for a true implicit representation such as the
SSDF. This means that schemes such as sphere tracing [Har96] or
the method proposed by Sharp and Jacobson [SJ22] are not appli-
cable to the GWN.

We note that the mesh optimization process described in Sec-
tions 6.2.1 and 6.2.2 was only carried out in order to enhance the
mesh resolution, so the reconstructions could be compared quanti-
tatively. This procedure is not applicable to UDFs where neither bi-
section nor Newton-Raphson methods can be used to project points
onto the surface.

We observed with shape completion that the inferred latent vec-
tors were further apart from the latent vectors from the training set.
Using the lipschitz loss does not prevent the inferred latent vectors
from converging to a point, where the latent vector matches the
partial shape arbitrarily well but does not meaningfully capture the
missing parts. Therefore, further work should investigate imposing

additional losses during training and inference to avoid the inferred
latent vectors to deviate from the training set.

In these experiments the input to the networks has been triangle
meshes, but point clouds with normals could also have been used,
if these came from an already learned class of shapes, as we only
need to estimate the distance from the points to the surface.

9.1. Limitations and future work

The partial reconstructions of the shapes in the MGN dataset are of
lower quality than the partial reconstructions of the BU-3DFE data
set. Figure 11 shows the completion of a partial T-shirt mesh where
neither method reconstructs the back of the shirt.

We suspect that the poor performance with regards to shape com-
pletion can be attributed to our choice of using Lipschitz regular-
ization [LWJ*22]. Lipschitz regularization ensures that the output
of the network is smooth as a function of the latent vectors. Par-

tial reconstruction is tantamount to finding the latent vector that
corresponds to the partial input based on the original (unregular-
ized) loss. Nothing prevents this optimization from moving the la-
tent vector very far away from the latent vectors of the training
data if this reduces the loss. That this occurs in practice is indicated
by the fact that for multiple inferences of the same partial shape,
the standard deviation of the obtained latent vectors were around
twice the standard deviation across latent vectors of different shape
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Table 3: Analysis of how four measures vary as the shape is inter-
polated between two different shapes. The numbers are means over
five pairs from the respective test set. ↓ indicates lower is better.
Best results marked in bold.

BU-3DFE MGN

Variability, surface area ↓ multiplied by 105

GWN 0.338 0.849
SSDF 0.323 0.609

Variability, number of connected components, ↓

GWN 1.45 0.013

SSDF 0.480 0.020

Variability, number of boundary curves, ↓

GWN 4.43 4.81
SSDF 1.23 0.373

Variability, boundary curve length, ↓ multiplied by 103

GWN 6.07 3.34
SSDF 0.933 0.720

Table 4: Analysis of the surface reconstructions of the partial
shapes. The partial surfaces are grouped after whether they con-
tain more or less than 50% of the original surface area. ↓ indicates
lower is better, ↑ indicates higher is better. Best results marked in
bold.

BU-3DFE MGN

Fraction of original surface ≤50% >50% ≤50% >50%

Chamfer distance, mean ↓ multiplied by 103

GWN 5.11 1.31 1.92 1.77

SSDF 2.90 0.772 2.62 1.84

Mesh completion, mean ↑

GWN 0.315 0.643 0.335 0.381

SSDF 0.387 0.749 0.200 0.277

in the training set, see Figure 12. Note that this issue does not af-
fect interpolation where the latent vectors are affine combinations
of latent vectors which correspond to fully specified shapes. Fu-
ture work should investigate constraining the latent vectors during
training and inference.

10. Conclusions

After investigating the GWN and our proposed SSDF for neural
representation of open surfaces, we find that, despite minor differ-
ences in performance, both the GWN and SSDF are well suited
for neural implicit surface representations. They can both represent
surfaces with a high degree of accuracy and generate a latent space
where latent vectors belonging to the same class cluster together,
and reconstruct from partial shapes. Additionally, both methods are
able to perform applaudable interpolations, even between shapes

Figure 11: Partial shape reconstructions of a T-shirt from the MGN

dataset [BTTP19]. From left to right: Ground truth shape, simulated
partial shape, GWN reconstruction, SSDF reconstruction.

−4 −2 0 2 4

−4

−2

0

2

4

Whole shapes
Multiple inferences of same partial shape

MDS1

M
D
S2

Figure 12: The latent vectors obtained for the same partial shape
with different initializations, along with the latent vectors for all
shapes in the test set (whole shapes).

that have a varying number of holes, but we find that our SSDF
performs slightly smoother interpolations than the GWN.
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