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Abstract

We address a subclass of segmentation problems
where the labels of the image are structured in
layers. We propose applying autoregressive CNNs
which, when given an image and a partial segmen-
tation of layers, complete the segmentation. Ini-
tializing the model with a user-provided partial
segmentation allows for choosing which layers the
model should segment. Alternatively, the model
can produce an automatic initialization, albeit with
some performance loss. The model is trained exclu-
sively on synthetic data from our data generation
algorithm. It yields impressive performance on the
synthetic data and generalizes to real data it has
never seen. Our method implementation is available
at https://github.com/JakobLC/LayeredCNN.

1 Introduction

When analysing biological tissues or manufactured
components we often meet structures that are ar-
ranged in layers. Two examples are shown in Fig-
ure 1: a µCT slice of bone growth plate, and an op-
tical coherence tomography image of retina. Many
segmentation tasks can therefore be formulated as
finding layers in images. This motivates us to for-
mulate a model that can segment layers.

Consider any of the examples in Figure 1. Given
the image and corresponding partial label1, a non-
expert should be able to complete the label by uti-
lizing layer appearance and the template given by
the partial label. With our model, which we call
LayeredCNN we aim to automate this task.
The partial label always consists of the leftmost

columns of the label, and can contain just a single

1The term label refers to label image.

Figure 1: Top: Examples of layered images with a
partial label and target label. Bottom: Zoom in
showing propagation of labels.

column of pixels. Extracting the full label based
on the partial label is quite challenging. Instead,
consider the much easier task of labelling just the
single column of pixels to the right of the partial
label. A model with this ability can iteratively label
subsequent columns, and we can continue until all
columns of the image have been labeled.

We will use an autoregressive convolutional neural
network (CNN) that conditions on label informa-
tion to the left to predict the next column of labels.
The network will however be able to use image in-
formation from the whole image. In our definition,
layered images have labels that can be represented
by ordered, non-intersecting curves placed at the
boundary between two neighbouring label class re-
gions. We call those curves layer curves. For each
x-value, every layer curve has a uniquely associated
y-value. For example, the labels of the bone image
in Figure 1 can be represented by four layer curves.
Our definition of layered images ensures that all
label classes present in the image will appear in the
partial label.
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In a standard segmentation network, the kth chan-
nel of the label prediction will be predetermined
as a specific class, e.g. the first channel is road,
the second channel is pedestrian, etc. Our network
operates differently. The partial label defines the
classes and not the network architecture. In a sense,
our network is much more adaptive than similar
networks [9] since we are also learning the label
class from the input. We refer to this formulation
as a class-agnostic model. A big benefit is that we
are capable of segmenting layers in a wide variety
of data using the same network.

The model is trained exclusively on synthetic data
from our data generation algorithm, yet it learns
segmentation that generalizes to real data that it
has never been trained on. This makes our network
useful as a tool to segment layered images without
needing to train a completely new network and
manually segmenting large quantities of data.

2 Related Works

Our model is inspired by the PixelCNN [14] frame-
work and its extensions [15, 13]. PixelCNNs were
suggested for data generation or image inpainting.
We want to use it to expand labels instead, as in
work by Leopold et al. [9]. Unlike previous works
for autoregressive labelling we use a class-agnostic
formulation and apply it to layered images.

Some notable extensions to the PixelCNN frame-
work are the Gated PixelCNN [15] and Pixel-
CNN++ [13]. The PixelCNN++ paper introduced
a multi-scale approach with up and downscaling of
neurons, similar to that of U-Net [12].

Graph-based methods have also been used for
detecting layers in images. One example is the
use of dynamic programming [1]. Here, a layer is
found as the path that minimizes the accumulated
cost along that path through image. This has been
extended to multiple layers by formulating a so-
called optimal net surface problem [16] that can
be efficiently solved using s-t graph cut [10]. This
has further been extended to multiple exclusive
objects [7]. However, all these methods depend on
handcrafted energy functions to separate the layers.
Our approach differs in that it avoids explicitly
formulating an energy function.

Figure 2: A 2D (left) and 1D (right) visualization
of the label dependence graph with no down and
upscaling. The output neuron (yellow with cross)
is dependent on blue neurons.

3 Method

3.1 Model Architecture

The model always segments from left to right. We
can still segment images in other directions if the
image is appropriately flipped /rotated.

Our model can extend a partial label by one col-
umn of pixels per forward pass. It is able to do this
because of one key aspect: a column of labels is
predicted using only label information to the left,
which we denote left label dependence. This depen-
dence can be satisfied using masked convolutions.
These work as normal convolutions except some
weights are ignored. Masked convolutions ignore
kernel information to the right of the center column.
If the center column of a masked convolution is also
ignored then it is denoted as a mask A convolution
and if not then mask B [15]. We show how masked
convolutions are used to satisfy the left label depen-
dence in Figure 2 for a simple network. Note that
the marked output neuron only depends on label
information to the left.

We implemented up and downscaling of neurons
by adapting the method from PixelCNN++ [13].
Figure 3 demonstrates how a naive up and down-
scaling would result in breaking the left label de-
pendence. Instead, each downscaling of the label
neeeds to be preceded by shifting the neurons to
the right.

An elementary unit of LayeredCNN architecture
is a convolutional block implemented to handle lay-
ered images and illustrated in Figure 4. The convo-
lutional block consists of two parallel feature stacks,
image feature stack and label feature stack, each
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Figure 3: A 1D visualization of the label dependence
graph with down and upscaling. The naive imple-
mentation contains illegal dependencies (marked
red). The output neuron (yellow with cross) is de-
pendent on the blue and green neurons. The output
is only dependent on the green neurons due to the
element-wise skip connections (dashed lines).

Figure 4: Architecture of the LayeredCNN convolu-
tional block.

equipped with residual connections [4]. Information
is passed from the image feature stack to the label
feature stack as the network needs information from
both to predict the labels correctly. Batch normal-
ization [6] is necessary to keep training stable.

The image feature stack uses normal (unmasked)
2D convolutions, allowing the network to see all
image information. The label feature stack uses
masked 3D convolutions. The depth dimension
(third dimension) represents the label classes given
to the stack as a one hot encoding. Since the net-
work is fully convolutional in all three dimensions,
we can use a label of the arbitrary depth, such that
the same network can be used for different number
of classes. The bottom right convolution in Fig-
ure 4 propagates information throughout the depth

dimension so the network can consider the different
layers in relation to each other.
Figure 5 shows the full network, which consists

of convolutional block stacks, with three blocks in
each block stack. Our network uses three down and
upsamplings. All the convolutional blocks use 32
feature channels. Strided convolutions and trans-
posed strided convolutions are used for downscaling
and upscaling, respectively. The network ends with
two convolutional layers to process the information
from all the skip connections. The network starts
with a single convolutional block which uses mask
A, and the block includes no residual connections.
This is in order to satisfy the left label dependence
as required by the first layer in Figure 3. All other
convolutional blocks use mask B.
The one hot encoded label given to the network

is always ordered from top (first depth channel)
to bottom (last depth channel). It is important
that the order is consistent to make training easier.
Note that the label is both an input and output of
the model and we are minimizing the negative log
likelihood between the predicted and target label.
The left label dependence makes this task non-trivial
since the network has to extend the label by one
column of pixels. It does this simultaneously for all
pixels since we are using convolutions. This means
that during training time all the iterations can be
trained with a single forward pass, which speeds up
training significantly.

During inference, when the network sequentially
labels columns of pixels they have a tendency to
become increasingly blurry due to the uncertainty
of the network. To combat this we introduce a post
processing step after each new column of labels has
been produced by our network (see Figure 6). The
sharpening is done by converting all probabilities in
the column to one-hot labels, except for one pixel at
each border between two different labels. These are
converted to a mixture of the two labels to allow
for sub-pixel accuracy.

3.2 Training Data

Our models are trained exclusively on synthetic data.
We have constructed a data generation algorithm
based on Brodatz textures [2] that aims at imitating
the structure and visual appearance of real layered
data (see Figure 7). We generate 30000 training
images with one to five layer curves (6000 of each).
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Figure 5: Architecture of the LayeredCNN. Dashed lines are residual skip connections between the
encoder and decoder. The downward connections coming from the block stacks are skip connections
connected to the end of the network to make learning easier.

Figure 6: The effect of label sharpening.

Figure 7: Synthetic images from the data generation
algorithm with layer curves in the left half.

Another 2000 images were generated and split into
a validation and test set. Additionally, we want to
find out how well our method works on real data and
we have therefore manually segmented 40 layered
images [11] coming from 4 vastly different domains.
We use 20 of these as a validation set and 20 as
a test set. All models are trained with images of
shape (H ×W ) = (64× 128) pixels. We apply the
following data augmentations during training:

Layer dropping where layer curves are ignored

from the label with a probability of 20%. This is to
make sure the network does not assume everything
that looks like a layer is supposed to be segmented
(e.g. we might want to only segment some of the
layers in a layered image). All layer curves cannot
be removed, and therefore one curve (chosen at
random) is always kept.

Horizontal and vertical flipping are used with
a probability of 50% each.

Border warping is a deformation that we define
by

l̂ = l+ lwarp, lwarp =
lnoise ∗ g√

Var[lnoise ∗ g]
σH , (1)

where l ∈ RW is a layer curve and l̂ ∈ RW is the
corresponding warped layer curve that has been
warped by lwarp ∈ RW . The numbers in the layer
curve vectors represent the height (y) position of
the layer at each image width index. The operator
∗ is a cross-correlation filtering and g is a Gaussian
kernel with standard deviation σW . The noise vector
lnoise ∈ RW contains I.I.D Gaussian noise which we
filter with g to get lwarp. The variable σH represents
the vertical warping height and σW represents the
horizontal smoothness of the warping. We sample
σW ∈ U(1, 3) and σH ∈ U(1, 1.5) (in pixels) where
U(a, b) is the uniform distribution. We apply border
warping to the input labels during training, but not
the target labels. This encourages the network to
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undo the border warping.

Training on network outputs is when we pass
an input through the network without gradients a
few times before doing the final forward pass with
gradients. However, The target label in the final
forward pass with gradients is kept unchanged. The
input label will be deformed by the network as if it
was continuing a column of labels per forward pass.
We are therefore training the network to fix its own
mistakes. The number of forward passes without
gradients is sampled with equal probability from
{0, 1, . . . ,min(⌊e/3⌋, 5)}, where e is the number of
completed epochs.

3.3 Automatic Initialization

We formulate a method of producing an automatic
initialization (partial label). We can give a trained
network a batch of 20 linearly spaced layer curve
initializations ranging from the bottom to the top of
an image. We initialize just the rightmost column
of labels and then segment the image from right
to left. The linearly spaced layers will find nearby
ground truth layers and end up clustering together.
The position of these clusters in the leftmost column
of labels can be used as our initializations. We
cluster layers with single-linkage clustering [3] with
a linkage distance of 1.5 pixels on the positions in
the leftmost column.

We want to select the best clusters. We can mea-
sure how confident the network is in a layer by how
blurry the one hot label is before layer sharpening.
The summed absolute difference between the un-
sharpened and sharpened one-hot label is the cost
associated with a layer. The cost associated with a
cluster is the minimum cost of the layers contained
in it.

The positions of the best m clusters are used,
where m is the number of layers we want to segment.
The actual segmentation can begin with the leftmost
column initialized at those positions (see Figure 8).

4 Experiments

4.1 Segmentation Results

We implemented LayeredCNN using PyTorch and
the model was trained with the Adam [8] optimizer

Figure 8: Segmentations of the synthetic data from
the test set. Left: Prediction with one columns of
target labels initialized. Middle: Linearly spaced
auto. init. curves with smaller numbers indicating
lower cluster costs. Right: Prediction made using
auto. init. positions (green arrows).

for 30 epochs (0.9 million images). Training the
model on a single Nvidia V100 GPU with 32 GB
RAM took approximately 15 hours. Segmenting a
(64× 128) image with 2 layer curves, which requires
127 sequential forward passes through the network,
takes approximately 5 seconds.
We are using two measures of performance: the

mean absolute distance between target layer curves
and predicted layer curves (denoted L1) and the
Adjusted Rand Index [5] (denoted ARI). ARI is
useful since it can also compare different numbers
of labels, which is a possibility when using auto.
init. Larger scores are better with ARI and ARI=1
represents a flawless segmentation while ARI=0 is
as good as random.
Results on synthetic data are very accurate (see

Figure 8 and Table 1). Some qualitative results
of real data are displayed in Figure 10, where the
label was initialized with only the leftmost column.
Most segmentations are accurate despite our model
only training on synthetic data. The model is able
to handle images where the segmentation is both
intensity and texture based. The prediction does
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Figure 9: The mean L1 error (for segmented
columns) plotted against the number of initialized
columns of label.

Network
Mea-
sure

Synthetic Real
Train Vali. Test Vali. Test

Base network
L1 ↓ 0.921 0.893 0.828 2.270 3.106
ARI ↑ 0.916 0.917 0.920 0.835 0.797

Base network
(auto. init.)

ARI ↑ 0.870 0.873 0.859 0.642 0.595

No TONO
& no BW

L1 ↓ 1.556 1.644 1.539 4.831 3.531
ARI ↑ 0.869 0.863 0.866 0.742 0.811

No TONO
L1 ↓ 0.973 1.012 0.854 2.720 2.890
ARI ↑ 0.913 0.914 0.920 0.822 0.828

No border
warping (BW)

L1 ↓ 1.066 1.103 0.886 2.148 2.710
ARI ↑ 0.904 0.903 0.912 0.843 0.829

Table 1: The mean performance measures of our
model on the different datasets. Training on net-
work outputs is abbreviated as TONO and border
warping as BW.

deviate from the target in some cases. On Test Bone
#1 (top image) the blue layer follows the porous
bone protrusions, however it is unclear from the
initialization whether they should be segmented or
not. In the third image, Test Bone #8, the model
has detected the blue curve correctly but loses track
of the orange curve. Perhaps this is because the
image is quite dissimilar from the synthetic training
data. The target orange curve indicates a subtle
boundary between a coarse texture to fine texture.
The synthetic training data rarely had such wide
fades. The network mostly fails on images with few
similarities to the synthetic training data.

4.2 Ablation study

To investigate the effect of the initialization size
we segmented images with an initialization ranging
from 1 to 30 label columns (see Figure 9). Perfor-
mance improves slightly with more columns.

To test the effect of our data augmentations
we train a network without border warping, with-
out training on network outputs and without both.

Figure 10: Segmentation results on real data from
the test set. Green arrows are auto. init. positions
(not used as initialization here). The bottom two im-
ages showcase that circular data can be segmented
by our model in polar coordinates.

Mean performance measures are shown in Table 1.
The table shows that the proposed augmentations
improve performance. Either training on network
outputs or border warping is necessary, although
both might not be needed. The model is more likely
to lose track of layers without any data augmen-
tations. The loss in ARI when using automatic
initializations is very low on the synthetic datasets
(2%-6%), but much larger on real data (23%-26%).
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The base network has 1.16 million trainable pa-
rameters and we found that increasing the model
size improved synthetic data performance slightly
while having no impact on real data performance.
This probably indicates that the distribution overlap
between real and synthetic images is limited.

5 Discussion and Conclusion

We present the LayeredCNN model architecture
which has relatively good success in segmenting real
images when considering the fact that it has only
trained on synthetic data. The model is extremely
good at finding layers in the synthetic data, and it
could even consistently segment them with no hu-
man supervision (automatic initialization). Human
supervision would however be required to get con-
sistent results on real data. The best improvement
would likely come from training a model on a large
dataset of real layered images, as most of the poor
performance was seen in data with few similarities
to the synthetic data. A good use of our model is
to reduce a long and arduous segmentation task to
just a couple of clicks. The main strength of our
model is the class-agnostic formulation that makes
it applicable to a large variety of different data that
it has not trained on.
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